找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity and Gravitational Waves; Essentials of Theory Sanjeev Dhurandhar,Sanjit Mitra Textbook 2022 The Editor(s) (if applicable

[復制鏈接]
樓主: GRASS
11#
發(fā)表于 2025-3-23 10:19:30 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:02:06 | 只看該作者
The Equivalence Principle,We describe the broad physical concepts of the weak and strong equivalence principles, that form the foundation of the general theory of relativity. We make use of some of the well known thought experiments to explain and elaborate on these concepts.
14#
發(fā)表于 2025-3-23 22:51:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:19:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:24:03 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:35 | 只看該作者
Textbook 2022advanced topics covered in this book is the fundamentals of gravitational wave data analysis, filling a gap in textbooks on general relativity. The topic blends smoothly with other chapters in the book not only because of the common area of research, but it uses similar differential geometric and al
18#
發(fā)表于 2025-3-24 15:31:08 | 只看該作者
Jean-Luc Brylinski,Steven Zucker be used to raise and lower indices of tensors. This is explicitly demonstrated in an oblique Cartesian coordinate system to connect a contravariant vector with a covariant vector and regard it as the same entity (isomorphic) with contravariant and covariant components.
19#
發(fā)表于 2025-3-24 20:05:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:05:28 | 只看該作者
Complex Numbers in Trigonometric Form,eed to consider only the weak field approximation and not slow motion—after all the GW, as we will show later, travel at the speed .. In order to make the weak field approximation we need to linearise Einstein’s equations. Note that since this is not the Newtonian approximation, because we allow spe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
德令哈市| 无锡市| 上杭县| 拉孜县| 北流市| 昭通市| 东兴市| 定南县| 会同县| 莲花县| 扎赉特旗| 玉山县| 株洲县| 乌拉特中旗| 石家庄市| 江北区| 莲花县| 静乐县| 蒙山县| 米易县| 彭水| 通城县| 冷水江市| 遂溪县| 肃北| 怀仁县| 孟州市| 金昌市| 新河县| 大庆市| 明溪县| 富源县| 永昌县| 剑阁县| 扎囊县| 湛江市| 星子县| 藁城市| 阿尔山市| 沿河| 闻喜县|