找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in ; Qi Lü,Xu Zhang Book 2014 The Author(

[復制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 12:46:23 | 只看該作者
Working methods: from theory into practice,In this chapter, we prove a uniqueness result for transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) and a well-posedness result for transposition solutions to this equation for the special case that both the final datum and the nonhomogeneous term are valued in the Hilbert space of Hilbert-Schmidt operators.
12#
發(fā)表于 2025-3-23 14:48:20 | 只看該作者
https://doi.org/10.1007/978-3-031-17084-3In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
13#
發(fā)表于 2025-3-23 18:24:35 | 只看該作者
Integration into the community,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
14#
發(fā)表于 2025-3-24 01:14:30 | 只看該作者
Community Pest Management in PracticeThe purpose of this chapter is to show a necessary condition for stochastic optimal controls when the control domain is a convex subset of some Hilbert space.
15#
發(fā)表于 2025-3-24 06:07:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:52 | 只看該作者
Preliminaries,In this chapter, we present nine lemmas that will be used in the rest of this book. The first one is the classical Burkholder-Davis-Gundy inequality in infinite dimensions, while the rest are new technical results.
17#
發(fā)表于 2025-3-24 13:35:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:39 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:13 | 只看該作者
Well-Posedness of the Operator-Valued BSEEs in the General Case,In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
20#
發(fā)表于 2025-3-25 01:40:46 | 只看該作者
Some Properties of the Relaxed Transposition Solutions to the Operator-Valued BSEEs,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 05:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荆州市| 崇文区| 怀仁县| 泾源县| 乐至县| 盐城市| 炉霍县| 页游| 定结县| 丹巴县| 丽江市| 威信县| 芷江| 定边县| 金秀| 昭平县| 沾益县| 都兰县| 合水县| 芜湖市| 嘉荫县| 高邮市| 临高县| 修水县| 隆化县| 湄潭县| 侯马市| 礼泉县| 阿尔山市| 双柏县| 康保县| 达孜县| 墨江| 浦北县| 北安市| 闻喜县| 呼和浩特市| 太原市| 大丰市| 壶关县| 崇仁县|