找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in ; Qi Lü,Xu Zhang Book 2014 The Author(

[復制鏈接]
查看: 41292|回復: 41
樓主
發(fā)表于 2025-3-21 16:44:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions
編輯Qi Lü,Xu Zhang
視頻videohttp://file.papertrans.cn/383/382089/382089.mp4
概述First monograph on Pontryagin-type maximum principle for stochastic evolution equations.Provides useful approach to the topic, useful for both beginners and experts.Provides detailed proof for most of
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in ;  Qi Lü,Xu Zhang Book 2014 The Author(
描述The classical Pontryagin maximum principle (addressed to deterministic finite dimensional control systems) is one of the three milestones in modern control theory. The corresponding theory is by now well-developed in the deterministic infinite dimensional setting and for the stochastic differential equations. However, very little is known about the same problem but for controlled stochastic (infinite dimensional) evolution equations when the diffusion term contains the control variables and the control domains are allowed to be non-convex. Indeed, it is one of the longstanding unsolved problems in stochastic control theory to establish the Pontryagin type maximum principle for this kind of general control systems: this book aims to give a solution to this problem. This book?will be?useful for both beginners and experts who are interested in optimal control theory for stochastic evolution equations.
出版日期Book 2014
關鍵詞Backward stochastics evolution equation; Optimal control; Pontryagin-type maximum principle; Stochastic
版次1
doihttps://doi.org/10.1007/978-3-319-06632-5
isbn_softcover978-3-319-06631-8
isbn_ebook978-3-319-06632-5Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2014
The information of publication is updating

書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions影響因子(影響力)




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions影響因子(影響力)學科排名




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions網(wǎng)絡公開度




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions網(wǎng)絡公開度學科排名




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions被引頻次




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions被引頻次學科排名




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions年度引用




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions年度引用學科排名




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions讀者反饋




書目名稱General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:52:21 | 只看該作者
Innovation and Diffusion in Mental Healthrucial roles in the study of the well-posedness of the operator-valued backward stochastic evolution Eq. (1.10) for general final datum and nonhomogeneous term. It seems that these sequential compactness results have some independent interest and may be applied in other places.
板凳
發(fā)表于 2025-3-22 02:17:11 | 只看該作者
Book 2014s in stochastic control theory to establish the Pontryagin type maximum principle for this kind of general control systems: this book aims to give a solution to this problem. This book?will be?useful for both beginners and experts who are interested in optimal control theory for stochastic evolution equations.
地板
發(fā)表于 2025-3-22 05:21:02 | 只看該作者
5#
發(fā)表于 2025-3-22 10:41:06 | 只看該作者
6#
發(fā)表于 2025-3-22 15:15:37 | 只看該作者
https://doi.org/10.1007/978-3-319-06632-5Backward stochastics evolution equation; Optimal control; Pontryagin-type maximum principle; Stochastic
7#
發(fā)表于 2025-3-22 19:13:35 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:43 | 只看該作者
9#
發(fā)表于 2025-3-23 02:06:08 | 只看該作者
10#
發(fā)表于 2025-3-23 08:47:47 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳西县| 开鲁县| 墨脱县| 定结县| 射洪县| 鄂托克前旗| 秦安县| 晋宁县| 石景山区| 繁昌县| 视频| 蒲江县| 大姚县| 外汇| 大连市| 双鸭山市| 延津县| 宁国市| 海门市| 乌拉特中旗| 神农架林区| 宁乡县| 灵寿县| 鹿邑县| 武宁县| 大城县| 砀山县| 扎囊县| 元江| 南昌市| 大化| 濮阳市| 梓潼县| 临海市| 瓮安县| 军事| 博客| 景谷| 忻州市| 射阳县| 即墨市|