找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in ; Qi Lü,Xu Zhang Book 2014 The Author(

[復(fù)制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 12:46:23 | 只看該作者
Working methods: from theory into practice,In this chapter, we prove a uniqueness result for transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) and a well-posedness result for transposition solutions to this equation for the special case that both the final datum and the nonhomogeneous term are valued in the Hilbert space of Hilbert-Schmidt operators.
12#
發(fā)表于 2025-3-23 14:48:20 | 只看該作者
https://doi.org/10.1007/978-3-031-17084-3In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
13#
發(fā)表于 2025-3-23 18:24:35 | 只看該作者
Integration into the community,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
14#
發(fā)表于 2025-3-24 01:14:30 | 只看該作者
Community Pest Management in PracticeThe purpose of this chapter is to show a necessary condition for stochastic optimal controls when the control domain is a convex subset of some Hilbert space.
15#
發(fā)表于 2025-3-24 06:07:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:52 | 只看該作者
Preliminaries,In this chapter, we present nine lemmas that will be used in the rest of this book. The first one is the classical Burkholder-Davis-Gundy inequality in infinite dimensions, while the rest are new technical results.
17#
發(fā)表于 2025-3-24 13:35:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:39 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:13 | 只看該作者
Well-Posedness of the Operator-Valued BSEEs in the General Case,In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
20#
發(fā)表于 2025-3-25 01:40:46 | 只看該作者
Some Properties of the Relaxed Transposition Solutions to the Operator-Valued BSEEs,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丹县| 陇南市| 汕头市| 通州区| 滕州市| 广州市| 外汇| 洞口县| 甘肃省| 会宁县| 文昌市| 广昌县| 苗栗市| 兴山县| 阜康市| 江都市| 镇巴县| 万载县| 牟定县| 昔阳县| 河南省| 罗城| 封开县| 北川| 林西县| 黎川县| 龙山县| 海晏县| 张北县| 乡宁县| 缙云县| 双牌县| 新化县| 昭平县| 东源县| 天峨县| 珠海市| 霞浦县| 德保县| 日喀则市| 东宁县|