找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian and Non-Gaussian Linear Time Series and Random Fields; Murray Rosenblatt Book 2000 Springer Science+Business Media New York 2000

[復(fù)制鏈接]
樓主: Disclose
11#
發(fā)表于 2025-3-23 10:59:50 | 只看該作者
Homogeneous Gaussian Random Fields,Let ξ(.), . G ., be a random field of real-valued random variables. . is a fixed finite set in . not containing 0. The set of points . ∈ . such that . — . ∈ . is called the .-boundary of the point .. The .-boundary of a set . ? . is the set of points . not in . but in the .-boundary of some point . ∈ ..
12#
發(fā)表于 2025-3-23 16:01:28 | 只看該作者
Cumulants, Mixing and Estimation for Gaussian Fields,Later on a number of methods will be introduced that are based on moments of cumulants and are used to estimate aspects of the structure of processes of interest. For this reason it seems proper to make some remarks about moments and cumulants and the relationship between them.
13#
發(fā)表于 2025-3-23 20:00:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:46:45 | 只看該作者
15#
發(fā)表于 2025-3-24 06:14:11 | 只看該作者
Minimum Phase Estimation,uivalent asymptotically in the Gaussian case to maximum likelihood estimates. Consider the stationary ARMA (., .) minimum phase sequence {x.}. with the ξ.’s independent, identically distributed with mean zero and variance σ..
16#
發(fā)表于 2025-3-24 08:44:12 | 只看該作者
978-1-4612-7067-6Springer Science+Business Media New York 2000
17#
發(fā)表于 2025-3-24 11:22:22 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:07 | 只看該作者
https://doi.org/10.1007/978-1-4612-1262-1Covariance matrix; Gaussian Linear Time Series; Likelihood; Linear Time Series; Probability theory; Time
19#
發(fā)表于 2025-3-24 19:02:24 | 只看該作者
Klaus-Geert Heyne,Gabriele Schmiedgenuivalent asymptotically in the Gaussian case to maximum likelihood estimates. Consider the stationary ARMA (., .) minimum phase sequence {x.}. with the ξ.’s independent, identically distributed with mean zero and variance σ..
20#
發(fā)表于 2025-3-24 23:26:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蛟河市| 浦江县| 荥经县| 阳泉市| 荃湾区| 九龙坡区| 汉寿县| 鲁甸县| 乌兰察布市| 永川市| 密云县| 浮梁县| 襄樊市| 元阳县| 宁明县| 南雄市| 四会市| 吴江市| 中阳县| 神池县| 固安县| 临洮县| 广元市| 越西县| 苍梧县| 长垣县| 二连浩特市| 佛学| 云安县| 丰镇市| 独山县| 赣榆县| 曲水县| 庄河市| 商丘市| 嵩明县| 曲麻莱县| 通化市| 中山市| 师宗县| 拜城县|