找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian and Non-Gaussian Linear Time Series and Random Fields; Murray Rosenblatt Book 2000 Springer Science+Business Media New York 2000

[復(fù)制鏈接]
查看: 29071|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:53:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields
編輯Murray Rosenblatt
視頻videohttp://file.papertrans.cn/381/380959/380959.mp4
叢書名稱Springer Series in Statistics
圖書封面Titlebook: Gaussian and Non-Gaussian Linear Time Series and Random Fields;  Murray Rosenblatt Book 2000 Springer Science+Business Media New York 2000
描述Much of this book is concerned with autoregressive and moving av- erage linear stationary sequences and random fields. These models are part of the classical literature in time series analysis, particularly in the Gaussian case. There is a large literature on probabilistic and statistical aspects of these models-to a great extent in the Gaussian context. In the Gaussian case best predictors are linear and there is an extensive study of the asymptotics of asymptotically optimal esti- mators. Some discussion of these classical results is given to provide a contrast with what may occur in the non-Gaussian case. There the prediction problem may be nonlinear and problems of estima- tion can have a certain complexity due to the richer structure that non-Gaussian models may have. Gaussian stationary sequences have a reversible probability struc- ture, that is, the probability structure with time increasing in the usual manner is the same as that with time reversed. Chapter 1 considers the question of reversibility for linear stationary sequences and gives necessary and sufficient conditions for the reversibility. A neat result of Breidt and Davis on reversibility is presented. A sim- ple
出版日期Book 2000
關(guān)鍵詞Covariance matrix; Gaussian Linear Time Series; Likelihood; Linear Time Series; Probability theory; Time
版次1
doihttps://doi.org/10.1007/978-1-4612-1262-1
isbn_softcover978-1-4612-7067-6
isbn_ebook978-1-4612-1262-1Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields影響因子(影響力)




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields影響因子(影響力)學(xué)科排名




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields網(wǎng)絡(luò)公開度




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields被引頻次




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields被引頻次學(xué)科排名




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields年度引用




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields年度引用學(xué)科排名




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields讀者反饋




書目名稱Gaussian and Non-Gaussian Linear Time Series and Random Fields讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:51:16 | 只看該作者
Gaussian and Non-Gaussian Linear Time Series and Random Fields
地板
發(fā)表于 2025-3-22 04:36:35 | 只看該作者
Book 2000e increasing in the usual manner is the same as that with time reversed. Chapter 1 considers the question of reversibility for linear stationary sequences and gives necessary and sufficient conditions for the reversibility. A neat result of Breidt and Davis on reversibility is presented. A sim- ple
5#
發(fā)表于 2025-3-22 09:22:06 | 只看該作者
6#
發(fā)表于 2025-3-22 12:57:31 | 只看該作者
7#
發(fā)表于 2025-3-22 19:20:03 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:39 | 只看該作者
Bedingte Reflexe, die Lernmatrix,Later on a number of methods will be introduced that are based on moments of cumulants and are used to estimate aspects of the structure of processes of interest. For this reason it seems proper to make some remarks about moments and cumulants and the relationship between them.
9#
發(fā)表于 2025-3-23 04:00:52 | 只看該作者
https://doi.org/10.1007/978-3-662-00604-7Assume that . is a stationary ARMA scheine satisfying the system of equations. where the ξ.’s are independent and identically distributed with .ξ. = 0 and .ξ. = σ. > 0. Consider the prediction problem in which one approximates x. by a function of x., s ≤ 0, in mean square as well as one can.
10#
發(fā)表于 2025-3-23 07:53:07 | 只看該作者
Reversibility and Identifiability,Let us first consider linear stationary sequences. A sequence of independent, identically distributed real random variables ξ., j = …, -1,0,1,… is given with Eξ. = 0, 0 < .ξ. = σ. < ∞. The process x. is obtained by passing this sequence through a linear filter characterized by the real weights, ., ∑. < ∞,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 锦州市| 隆化县| 中牟县| 扎赉特旗| 罗江县| 乌兰察布市| 海门市| 渭南市| 大城县| 松桃| 曲阳县| 肥乡县| 新竹县| 华宁县| 雷山县| 邳州市| 成安县| 林州市| 香河县| 九龙县| 宜春市| 盐池县| 嵊州市| 泽库县| 建阳市| 新竹市| 闸北区| 岳阳县| 林周县| 长海县| 北流市| 陇南市| 平顺县| 林州市| 东丰县| 靖西县| 黎平县| 扶沟县| 济阳县| 昆山市|