找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Random Functions; M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.

[復(fù)制鏈接]
樓主: 全體
51#
發(fā)表于 2025-3-30 09:01:09 | 只看該作者
Majorizing Measures,have different forms (see Theorems 14.1 and 14.5), and a certain gap may exist between these bounds. In particular, this is a reason of that it is impossible to give necessary and sufficient conditions for the boundedness (or continuity) of a Gaussian random function in terms of the entropy. In the
52#
發(fā)表于 2025-3-30 15:11:43 | 只看該作者
53#
發(fā)表于 2025-3-30 20:20:46 | 只看該作者
54#
發(fā)表于 2025-3-30 23:44:44 | 只看該作者
Several Open Problems,., ρ), and moreover, one can construct an indicator model for this function. The converse is obviously true: If both a Brownian function . an indicator model for this function exist, then (., ρ) may be isometrically embedded into L.. However, a more natural question is the following: Does the existe
55#
發(fā)表于 2025-3-31 01:58:08 | 只看該作者
Book 1995t all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht< classical normal distribution, go to work as such e
56#
發(fā)表于 2025-3-31 06:36:54 | 只看該作者
57#
發(fā)表于 2025-3-31 11:56:41 | 只看該作者
58#
發(fā)表于 2025-3-31 13:38:23 | 只看該作者
59#
發(fā)表于 2025-3-31 18:36:00 | 只看該作者
60#
發(fā)表于 2025-4-1 01:43:59 | 只看該作者
https://doi.org/10.1007/978-3-030-05099-3efined on an . parametric set, we shall interpret the regularity as boundedness of the sample functions, or the continuity of sample functions with respect to the intrinsic semimetric. We shall also mention some special features of the regularity of ., such as boundedness of the variation and differentiability.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌审旗| 黑河市| 松潘县| 抚松县| 通州市| 浑源县| 吴江市| 盐津县| 凤城市| 三门县| 南溪县| 库尔勒市| 防城港市| 清涧县| 西青区| 邵阳市| 扎囊县| 时尚| 抚顺县| 青海省| 原平市| 微山县| 绥阳县| 平顺县| 通城县| 益阳市| 彭山县| 伊吾县| 铁岭市| 左云县| 平定县| 昌宁县| 聂拉木县| 九龙坡区| 和顺县| 高安市| 湘潭县| 星子县| 梁山县| 承德县| 贵德县|