找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Random Functions; M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.

[復(fù)制鏈接]
查看: 44851|回復(fù): 69
樓主
發(fā)表于 2025-3-21 17:19:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Gaussian Random Functions
編輯M. A. Lifshits
視頻videohttp://file.papertrans.cn/381/380956/380956.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Gaussian Random Functions;  M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.
描述It is well known that the normal distribution is the most pleasant, one can even say, an exemplary object in the probability theory. It combines almost all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht< classical normal distribution, go to work as such exemplary objects in the theory of Gaussian random functions. When one switches to the infinite dimension, some "one-dimensional" properties are extended almost literally, while some others should be profoundly justified, or even must be reconsidered. What is more, the infinite-dimensional situation reveals important links and structures, which either have looked trivial or have not played an independent role in the classical case. The complex of concepts and problems emerging here has become a subject of the theory of Gaussian random functions and their distributions, one of the most advanced fields of the probability science. Although the basic elements in this field were formed in the sixties-seventies, it has been still until recently wh
出版日期Book 1995
關(guān)鍵詞Gaussian distribution; Gaussian measure; Probability theory; Variance; distribution; law of the iterated
版次1
doihttps://doi.org/10.1007/978-94-015-8474-6
isbn_softcover978-90-481-4528-7
isbn_ebook978-94-015-8474-6
copyrightSpringer Science+Business Media Dordrecht 1995
The information of publication is updating

書目名稱Gaussian Random Functions影響因子(影響力)




書目名稱Gaussian Random Functions影響因子(影響力)學(xué)科排名




書目名稱Gaussian Random Functions網(wǎng)絡(luò)公開度




書目名稱Gaussian Random Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gaussian Random Functions被引頻次




書目名稱Gaussian Random Functions被引頻次學(xué)科排名




書目名稱Gaussian Random Functions年度引用




書目名稱Gaussian Random Functions年度引用學(xué)科排名




書目名稱Gaussian Random Functions讀者反饋




書目名稱Gaussian Random Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:29:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:24:57 | 只看該作者
,Schwei?- und Schwei?restspannungen,of a Brownian function implies that the space may be embedded into L., and hence an indicator model exists [B—DC—K, Gag]. A similar statement is apparently true for a wider class of spaces, for instance, for the . spaces. The homogeneity may be interpreted, for example, in the same sense as it was d
5#
發(fā)表于 2025-3-22 09:35:56 | 只看該作者
6#
發(fā)表于 2025-3-22 16:28:03 | 只看該作者
7#
發(fā)表于 2025-3-22 20:04:50 | 只看該作者
R. Mantegazza,P. Bernasconi,F. CornelioDistributions in ? .. We are now going to extend the notions introduced in Section 1 to the case when ? . is replaced by an arbitrary finite-dimensional Euclidean space ?..
8#
發(fā)表于 2025-3-22 23:41:35 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:06 | 只看該作者
10#
發(fā)表于 2025-3-23 09:33:39 | 只看該作者
https://doi.org/10.1007/978-3-322-83270-2Let (., ρ) be a metric space. Denote by ..(t)≡ { . ∈ . | ρ (., .) ≤δ} a ball of radius δ centered at .. Let .: . → .. be an arbitrary function.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴堡县| 平定县| 蓝山县| 浮梁县| 同江市| 措勤县| 普陀区| 凭祥市| 申扎县| 铜山县| 香河县| 介休市| 怀仁县| 龙山县| 曲周县| 华阴市| 赣州市| 阿拉尔市| 仁怀市| 上犹县| 泾阳县| 宜城市| 仁寿县| 镇江市| 霍城县| 呼玛县| 辽阳县| 淅川县| 黎川县| 随州市| 普宁市| 铜川市| 耿马| 正定县| 抚宁县| 阜康市| 沾益县| 正安县| 阳新县| 成武县| 义乌市|