找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Random Functions; M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.

[復(fù)制鏈接]
查看: 44850|回復(fù): 69
樓主
發(fā)表于 2025-3-21 17:19:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Gaussian Random Functions
編輯M. A. Lifshits
視頻videohttp://file.papertrans.cn/381/380956/380956.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Gaussian Random Functions;  M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.
描述It is well known that the normal distribution is the most pleasant, one can even say, an exemplary object in the probability theory. It combines almost all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht< classical normal distribution, go to work as such exemplary objects in the theory of Gaussian random functions. When one switches to the infinite dimension, some "one-dimensional" properties are extended almost literally, while some others should be profoundly justified, or even must be reconsidered. What is more, the infinite-dimensional situation reveals important links and structures, which either have looked trivial or have not played an independent role in the classical case. The complex of concepts and problems emerging here has become a subject of the theory of Gaussian random functions and their distributions, one of the most advanced fields of the probability science. Although the basic elements in this field were formed in the sixties-seventies, it has been still until recently wh
出版日期Book 1995
關(guān)鍵詞Gaussian distribution; Gaussian measure; Probability theory; Variance; distribution; law of the iterated
版次1
doihttps://doi.org/10.1007/978-94-015-8474-6
isbn_softcover978-90-481-4528-7
isbn_ebook978-94-015-8474-6
copyrightSpringer Science+Business Media Dordrecht 1995
The information of publication is updating

書目名稱Gaussian Random Functions影響因子(影響力)




書目名稱Gaussian Random Functions影響因子(影響力)學(xué)科排名




書目名稱Gaussian Random Functions網(wǎng)絡(luò)公開度




書目名稱Gaussian Random Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gaussian Random Functions被引頻次




書目名稱Gaussian Random Functions被引頻次學(xué)科排名




書目名稱Gaussian Random Functions年度引用




書目名稱Gaussian Random Functions年度引用學(xué)科排名




書目名稱Gaussian Random Functions讀者反饋




書目名稱Gaussian Random Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:29:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:24:57 | 只看該作者
,Schwei?- und Schwei?restspannungen,of a Brownian function implies that the space may be embedded into L., and hence an indicator model exists [B—DC—K, Gag]. A similar statement is apparently true for a wider class of spaces, for instance, for the . spaces. The homogeneity may be interpreted, for example, in the same sense as it was d
5#
發(fā)表于 2025-3-22 09:35:56 | 只看該作者
6#
發(fā)表于 2025-3-22 16:28:03 | 只看該作者
7#
發(fā)表于 2025-3-22 20:04:50 | 只看該作者
R. Mantegazza,P. Bernasconi,F. CornelioDistributions in ? .. We are now going to extend the notions introduced in Section 1 to the case when ? . is replaced by an arbitrary finite-dimensional Euclidean space ?..
8#
發(fā)表于 2025-3-22 23:41:35 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:06 | 只看該作者
10#
發(fā)表于 2025-3-23 09:33:39 | 只看該作者
https://doi.org/10.1007/978-3-322-83270-2Let (., ρ) be a metric space. Denote by ..(t)≡ { . ∈ . | ρ (., .) ≤δ} a ball of radius δ centered at .. Let .: . → .. be an arbitrary function.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浮梁县| 廉江市| 略阳县| 道孚县| 竹溪县| 临武县| 团风县| 新竹县| 武穴市| 资溪县| 陕西省| 清流县| 扶绥县| 汉阴县| 达日县| 双辽市| 南昌市| 巴中市| 海南省| 醴陵市| 平江县| 乐昌市| 淮安市| 新田县| 怀来县| 龙胜| 洛南县| 民县| 溧水县| 涞源县| 禄丰县| 嘉祥县| 义乌市| 东乡族自治县| 平遥县| 锡林浩特市| 宾阳县| 萝北县| 遵义县| 开化县| 成都市|