找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gauss Diagram Invariants for Knots and Links; Thomas Fiedler Book 2001 Springer Science+Business Media B.V. 2001 DEX.Finite.Invariant.Knot

[復(fù)制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 11:58:02 | 只看該作者
12#
發(fā)表于 2025-3-23 14:19:45 | 只看該作者
13#
發(fā)表于 2025-3-23 19:31:44 | 只看該作者
,Global knot theory in ,, × ?,Let .. be a compact oriented surface with or without boundary, and let . be a Morse-Smale vector field on .. which is transverse to the boundary ... (For us, a Morse-Smale vector field is a smooth vector field, having at most isolated non-degenerate singularities, and no limit cycles.) We study oriented knots . in the oriented manifold .. × ?.
14#
發(fā)表于 2025-3-23 22:57:00 | 只看該作者
,Isotopies with restricted cusp crossing for fronts with exactly two cusps of Legendre knots in ,*?,It turns out to be very difficult to generalise our approach for knots in circle bundles. The reason is that we no longer have undercrossings and overcrossings, and hence we do not have arrows, markings, and writhes on the chords.
15#
發(fā)表于 2025-3-24 05:03:15 | 只看該作者
16#
發(fā)表于 2025-3-24 10:32:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:20:37 | 只看該作者
18#
發(fā)表于 2025-3-24 17:00:42 | 只看該作者
Simone Bunse,Paul Magnette,Kalypso Nicola?disnd of borders, the use of temporary detention centers as part of the toughening of asylum policy, the criminalization of migration, and the marginalization resulting from discrimination against migrants all lead to conflict. This can be explained by the fact that the illegal status afforded migrants
19#
發(fā)表于 2025-3-24 22:16:52 | 只看該作者
20#
發(fā)表于 2025-3-25 01:31:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨海县| 突泉县| 武邑县| 阜城县| 大名县| 阿克苏市| 白山市| 磐石市| 隆昌县| SHOW| 黄浦区| 巴东县| 抚顺市| 苏尼特右旗| 忻州市| 台东县| 会东县| 固原市| 巴中市| 井冈山市| 崇仁县| 铁岭市| 尉犁县| 平罗县| 潼关县| 大渡口区| 壶关县| 西吉县| 通河县| 台中县| 拉萨市| 武城县| 乌鲁木齐县| 西昌市| 依安县| 呼玛县| 澄迈县| 贵溪市| 罗城| 承德市| 电白县|