找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gauss Diagram Invariants for Knots and Links; Thomas Fiedler Book 2001 Springer Science+Business Media B.V. 2001 DEX.Finite.Invariant.Knot

[復(fù)制鏈接]
查看: 53800|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:06:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Gauss Diagram Invariants for Knots and Links
編輯Thomas Fiedler
視頻videohttp://file.papertrans.cn/381/380950/380950.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Gauss Diagram Invariants for Knots and Links;  Thomas Fiedler Book 2001 Springer Science+Business Media B.V. 2001 DEX.Finite.Invariant.Knot
描述Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with an oriented line. The invariants are defined in a combinatorial way using knot diagrams, and they take values in free abelian groups generated by the first homology group of the surface or by the set of free homotopy classes of loops in the surface. There are three main results: 1. The construction of invariants of finite type for arbitrary knots in non- orientable 3-manifolds. These invariants can distinguish homotopic knots with homeomorphic complements. 2. Specific invariants of degree 3 for knots in the solid torus. These invariants cannot be generalized for knots in handlebodies of higher genus, in contrast to invariants coming from the theory of skein modules. 2 3. We introduce a special class of knots called global knots, in F x lR and we construct new isotopy invariants, called T-invariants, for global knots. Some T-invariants (but not all !) are of finite type but they cannot be extracted from the generalized Kontsevich integral, which is consequently not the universal invariant of finite type for the restricted class of globa
出版日期Book 2001
關(guān)鍵詞DEX; Finite; Invariant; Knot theory; Natural; design; diagrams; integral; modular curve; quantum invariant; to
版次1
doihttps://doi.org/10.1007/978-94-015-9785-2
isbn_softcover978-90-481-5748-8
isbn_ebook978-94-015-9785-2
copyrightSpringer Science+Business Media B.V. 2001
The information of publication is updating

書目名稱Gauss Diagram Invariants for Knots and Links影響因子(影響力)




書目名稱Gauss Diagram Invariants for Knots and Links影響因子(影響力)學(xué)科排名




書目名稱Gauss Diagram Invariants for Knots and Links網(wǎng)絡(luò)公開度




書目名稱Gauss Diagram Invariants for Knots and Links網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gauss Diagram Invariants for Knots and Links被引頻次




書目名稱Gauss Diagram Invariants for Knots and Links被引頻次學(xué)科排名




書目名稱Gauss Diagram Invariants for Knots and Links年度引用




書目名稱Gauss Diagram Invariants for Knots and Links年度引用學(xué)科排名




書目名稱Gauss Diagram Invariants for Knots and Links讀者反饋




書目名稱Gauss Diagram Invariants for Knots and Links讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:28:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:21:17 | 只看該作者
地板
發(fā)表于 2025-3-22 07:13:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:27:26 | 只看該作者
Authority and Authorship in V.S. NaipaulLet pr: .. × ? → .. denote the standard projection. A . is the oriented image of a smooth embedding of .. in .. × ?. We call . a . if pr: . → .. is an immersion.
6#
發(fā)表于 2025-3-22 16:14:49 | 只看該作者
7#
發(fā)表于 2025-3-22 21:03:26 | 只看該作者
https://doi.org/10.1057/9780230282032Because quantum invariants and integer valued Vassiliev invariants were not defined in non-orientable 3-manifolds we pay special attention to our invariants in the case of non-orientable surfaces ... We have found interesting examples already with rather view crossings and calculations could be done by hand.
8#
發(fā)表于 2025-3-22 21:48:58 | 只看該作者
9#
發(fā)表于 2025-3-23 05:17:41 | 只看該作者
10#
發(fā)表于 2025-3-23 07:22:40 | 只看該作者
The space of diagrams,Let pr: .. × ? → .. denote the standard projection. A . is the oriented image of a smooth embedding of .. in .. × ?. We call . a . if pr: . → .. is an immersion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄浪县| 来凤县| 繁昌县| 隆子县| 大竹县| 抚远县| 承德县| 南京市| 寿阳县| 额尔古纳市| 巨野县| 涿鹿县| 锦屏县| 万安县| 博客| 泌阳县| 武清区| 临桂县| 敖汉旗| 蒙山县| 台湾省| 景洪市| 社旗县| 天全县| 高台县| 饶河县| 富平县| 霍林郭勒市| 政和县| 安龙县| 綦江县| 正蓝旗| 宁陵县| 乌拉特中旗| 安多县| 黄骅市| 北辰区| 游戏| 武安市| 临西县| 宁化县|