找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Game Theory for Networks; Third International Vikram Krishnamurthy,Qing Zhao,Yonggang Wen Conference proceedings 2012 ICST Institute for C

[復(fù)制鏈接]
樓主: Destruct
41#
發(fā)表于 2025-3-28 15:10:01 | 只看該作者
42#
發(fā)表于 2025-3-28 22:03:52 | 只看該作者
43#
發(fā)表于 2025-3-29 02:01:20 | 只看該作者
44#
發(fā)表于 2025-3-29 07:02:45 | 只看該作者
Convergence Dynamics of Graphical Congestion Games,g when graphical congestion game dynamics converge to pure Nash equilibria yields important engineering insights into when spatially distributed individuals can reach a stable resource allocation. In this paper, we study the convergence dynamics of graphical congestion games where players can use mu
45#
發(fā)表于 2025-3-29 07:14:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:40:25 | 只看該作者
Efficiency Loss in a Cournot Oligopoly with Convex Market Demand,t a Cournot equilibrium to the maximum possible, for the case where the inverse market demand function is convex. We establish a lower bound on the efficiency of Cournot equilibria in terms of a scalar parameter derived from the inverse demand function. Our results provide nontrivial quantitative bo
47#
發(fā)表于 2025-3-29 17:59:16 | 只看該作者
A Game Theoretic Optimization of the Multi-channel ALOHA Protocol,-channel ALOHA protocol, each user tries to randomly access a channel using a probability vector defining the access probability to the various channels. First, we characterize the Nash Equilibrium Points (NEPs) of the network when users solve the unconstrained rate maximization. We show that in thi
48#
發(fā)表于 2025-3-29 23:43:07 | 只看該作者
Game-theoretic Robustness of Many-to-one Networks, a game-theoretic model. More specifically, we model the interactions between a network operator and an adversary as a two player zero-sum game, where the network operator chooses a spanning tree in the network, the adversary chooses an edge to be removed from the network, and the adversary’s payoff
49#
發(fā)表于 2025-3-30 03:03:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:28:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳普湖县| 德清县| 富顺县| 揭东县| 京山县| 金溪县| 阿克苏市| 若尔盖县| 广宗县| 濮阳县| 麻江县| 宁南县| 新竹市| 竹北市| 蒲江县| 定陶县| 鲁甸县| 沙洋县| 玉田县| 武汉市| 偏关县| 英吉沙县| 中阳县| 南城县| 绥阳县| 娱乐| 满洲里市| 手机| 光泽县| 沙田区| 泗洪县| 阳曲县| 渝北区| 台北市| 方正县| 平昌县| 乌苏市| 中超| 叶城县| 哈尔滨市| 巩留县|