找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Game Theory for Networks; Third International Vikram Krishnamurthy,Qing Zhao,Yonggang Wen Conference proceedings 2012 ICST Institute for C

[復(fù)制鏈接]
樓主: Destruct
41#
發(fā)表于 2025-3-28 15:10:01 | 只看該作者
42#
發(fā)表于 2025-3-28 22:03:52 | 只看該作者
43#
發(fā)表于 2025-3-29 02:01:20 | 只看該作者
44#
發(fā)表于 2025-3-29 07:02:45 | 只看該作者
Convergence Dynamics of Graphical Congestion Games,g when graphical congestion game dynamics converge to pure Nash equilibria yields important engineering insights into when spatially distributed individuals can reach a stable resource allocation. In this paper, we study the convergence dynamics of graphical congestion games where players can use mu
45#
發(fā)表于 2025-3-29 07:14:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:40:25 | 只看該作者
Efficiency Loss in a Cournot Oligopoly with Convex Market Demand,t a Cournot equilibrium to the maximum possible, for the case where the inverse market demand function is convex. We establish a lower bound on the efficiency of Cournot equilibria in terms of a scalar parameter derived from the inverse demand function. Our results provide nontrivial quantitative bo
47#
發(fā)表于 2025-3-29 17:59:16 | 只看該作者
A Game Theoretic Optimization of the Multi-channel ALOHA Protocol,-channel ALOHA protocol, each user tries to randomly access a channel using a probability vector defining the access probability to the various channels. First, we characterize the Nash Equilibrium Points (NEPs) of the network when users solve the unconstrained rate maximization. We show that in thi
48#
發(fā)表于 2025-3-29 23:43:07 | 只看該作者
Game-theoretic Robustness of Many-to-one Networks, a game-theoretic model. More specifically, we model the interactions between a network operator and an adversary as a two player zero-sum game, where the network operator chooses a spanning tree in the network, the adversary chooses an edge to be removed from the network, and the adversary’s payoff
49#
發(fā)表于 2025-3-30 03:03:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:28:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿迁市| 米易县| 通江县| 亚东县| 林周县| 星座| 孟津县| 洛浦县| 宝坻区| 和林格尔县| 固始县| 灌云县| 白沙| 崇仁县| 炎陵县| 龙门县| 东海县| 司法| 和平县| 宜兴市| 崇礼县| 平昌县| 宿迁市| 和田市| 如东县| 潮州市| 墨脱县| 绥宁县| 太原市| 阳信县| 精河县| 婺源县| 沙坪坝区| 鹤山市| 连江县| 平安县| 商丘市| 象州县| 白水县| 大宁县| 文登市|