找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory, Coverings, and Riemann Surfaces; Askold Khovanskii Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 Galois group.monodr

[復(fù)制鏈接]
樓主: GURU
11#
發(fā)表于 2025-3-23 11:05:31 | 只看該作者
12#
發(fā)表于 2025-3-23 17:49:51 | 只看該作者
13#
發(fā)表于 2025-3-23 20:01:42 | 只看該作者
Ramified Coverings and Galois Theory, surfaces, the geometry of ramified coverings and Galois theory are not only analogous but in fact very closely related to each other. This relationship is useful in both directions. On the one hand, Galois theory and Riemann’s existence theorem allow one to describe the field of functions on a rami
14#
發(fā)表于 2025-3-23 23:33:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:26 | 只看該作者
16#
發(fā)表于 2025-3-24 07:46:36 | 只看該作者
Askold KhovanskiiClassical Galois theory and classification of coverings are explained from scratch.Gentle introduction to the cutting edge of research.Written by one of the founders of topological Galois theory.Inclu
17#
發(fā)表于 2025-3-24 12:55:14 | 只看該作者
,Symptomkategorien psychischer St?rungen,t from the classical problem on solvability of an algebraic equation by radicals, we also consider other problems of this type, for instance, the question of solvability of an equation by radicals and by solving auxiliary equations of degree at most k. While our proof of the fundamental theorem of G
18#
發(fā)表于 2025-3-24 15:41:24 | 只看該作者
Benedikt Friedrichs,Christian Kn?chelbetween the fundamental theorem of Galois theory and classification of coverings over a topological space. A description of this analogy is given in the second chapter. We consider several classifications of coverings closely related to each other. At the same time, we stress a formal analogy betwee
19#
發(fā)表于 2025-3-24 22:24:58 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
精河县| 南昌市| 资中县| 六盘水市| 宜良县| 财经| 松阳县| 宣武区| 彝良县| 普兰店市| 阳泉市| 纳雍县| 玉环县| 乌鲁木齐市| 安多县| 抚远县| 遵义县| 滨海县| 南江县| 长治市| 轮台县| 淮安市| 新郑市| 依兰县| 伊川县| 江陵县| 定安县| 民勤县| 江阴市| 吉安县| 韶山市| 民县| 遂平县| 湛江市| 九龙坡区| 星座| 图木舒克市| 白银市| 武邑县| 台安县| 东乌珠穆沁旗|