找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory, Coverings, and Riemann Surfaces; Askold Khovanskii Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 Galois group.monodr

[復(fù)制鏈接]
查看: 51295|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:19:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Galois Theory, Coverings, and Riemann Surfaces
編輯Askold Khovanskii
視頻videohttp://file.papertrans.cn/381/380430/380430.mp4
概述Classical Galois theory and classification of coverings are explained from scratch.Gentle introduction to the cutting edge of research.Written by one of the founders of topological Galois theory.Inclu
圖書封面Titlebook: Galois Theory, Coverings, and Riemann Surfaces;  Askold Khovanskii Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 Galois group.monodr
描述.The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author. .All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers..
出版日期Textbook 2013
關(guān)鍵詞Galois group; monodromy group; solvability by radicals
版次1
doihttps://doi.org/10.1007/978-3-642-38841-5
isbn_softcover978-3-662-51956-1
isbn_ebook978-3-642-38841-5
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Galois Theory, Coverings, and Riemann Surfaces影響因子(影響力)




書目名稱Galois Theory, Coverings, and Riemann Surfaces影響因子(影響力)學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces網(wǎng)絡(luò)公開度




書目名稱Galois Theory, Coverings, and Riemann Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces被引頻次




書目名稱Galois Theory, Coverings, and Riemann Surfaces被引頻次學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces年度引用




書目名稱Galois Theory, Coverings, and Riemann Surfaces年度引用學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces讀者反饋




書目名稱Galois Theory, Coverings, and Riemann Surfaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:14:04 | 只看該作者
en by one of the founders of topological Galois theory.Inclu.The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising an
地板
發(fā)表于 2025-3-22 07:13:32 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:06 | 只看該作者
6#
發(fā)表于 2025-3-22 16:33:20 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:48 | 只看該作者
Coverings,he second chapter. We consider several classifications of coverings closely related to each other. At the same time, we stress a formal analogy between the results thus obtained and the fundamental theorem of Galois theory.
8#
發(fā)表于 2025-3-22 22:39:07 | 只看該作者
9#
發(fā)表于 2025-3-23 04:50:49 | 只看該作者
https://doi.org/10.1007/978-3-642-57544-0the geometry of ramified coverings together with Riemann’s existence theorem allows one to give a transparent description of algebraic extensions of the field of meromorphic functions over a Riemann surface.
10#
發(fā)表于 2025-3-23 09:03:13 | 只看該作者
Ramified Coverings and Galois Theory,the geometry of ramified coverings together with Riemann’s existence theorem allows one to give a transparent description of algebraic extensions of the field of meromorphic functions over a Riemann surface.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨竹工卡县| 拜城县| 梨树县| 建宁县| 宁晋县| 滕州市| 沂源县| 广东省| 宣化县| 手游| 丹凤县| 黎城县| 古浪县| 铜鼓县| 金秀| 聂拉木县| 无极县| 兰考县| 绿春县| 建阳市| 乌鲁木齐市| 神木县| 金川县| 舟山市| 屏山县| 鸡泽县| 洞口县| 西宁市| 土默特左旗| 宜良县| 新安县| 彭山县| 博爱县| 江孜县| 潞城市| 双辽市| 延庆县| 磐石市| 龙口市| 绍兴市| 清丰县|