找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory, Coverings, and Riemann Surfaces; Askold Khovanskii Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 Galois group.monodr

[復(fù)制鏈接]
查看: 51295|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:19:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Galois Theory, Coverings, and Riemann Surfaces
編輯Askold Khovanskii
視頻videohttp://file.papertrans.cn/381/380430/380430.mp4
概述Classical Galois theory and classification of coverings are explained from scratch.Gentle introduction to the cutting edge of research.Written by one of the founders of topological Galois theory.Inclu
圖書封面Titlebook: Galois Theory, Coverings, and Riemann Surfaces;  Askold Khovanskii Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 Galois group.monodr
描述.The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author. .All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers..
出版日期Textbook 2013
關(guān)鍵詞Galois group; monodromy group; solvability by radicals
版次1
doihttps://doi.org/10.1007/978-3-642-38841-5
isbn_softcover978-3-662-51956-1
isbn_ebook978-3-642-38841-5
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Galois Theory, Coverings, and Riemann Surfaces影響因子(影響力)




書目名稱Galois Theory, Coverings, and Riemann Surfaces影響因子(影響力)學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces網(wǎng)絡(luò)公開度




書目名稱Galois Theory, Coverings, and Riemann Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces被引頻次




書目名稱Galois Theory, Coverings, and Riemann Surfaces被引頻次學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces年度引用




書目名稱Galois Theory, Coverings, and Riemann Surfaces年度引用學(xué)科排名




書目名稱Galois Theory, Coverings, and Riemann Surfaces讀者反饋




書目名稱Galois Theory, Coverings, and Riemann Surfaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:14:04 | 只看該作者
en by one of the founders of topological Galois theory.Inclu.The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising an
地板
發(fā)表于 2025-3-22 07:13:32 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:06 | 只看該作者
6#
發(fā)表于 2025-3-22 16:33:20 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:48 | 只看該作者
Coverings,he second chapter. We consider several classifications of coverings closely related to each other. At the same time, we stress a formal analogy between the results thus obtained and the fundamental theorem of Galois theory.
8#
發(fā)表于 2025-3-22 22:39:07 | 只看該作者
9#
發(fā)表于 2025-3-23 04:50:49 | 只看該作者
https://doi.org/10.1007/978-3-642-57544-0the geometry of ramified coverings together with Riemann’s existence theorem allows one to give a transparent description of algebraic extensions of the field of meromorphic functions over a Riemann surface.
10#
發(fā)表于 2025-3-23 09:03:13 | 只看該作者
Ramified Coverings and Galois Theory,the geometry of ramified coverings together with Riemann’s existence theorem allows one to give a transparent description of algebraic extensions of the field of meromorphic functions over a Riemann surface.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙湾县| 永年县| 海安县| 镇坪县| 织金县| 平潭县| 甘孜县| 江安县| 普定县| 深泽县| 灌阳县| 平遥县| 榆中县| 黄骅市| 库伦旗| 连州市| 江川县| 庆安县| 郧西县| 延安市| 共和县| 黄冈市| 绥化市| 全南县| 彰化县| 波密县| 突泉县| 长治县| 黑河市| 楚雄市| 滕州市| 澎湖县| 滨海县| 辛集市| 民乐县| 安仁县| 渭源县| 永年县| 武穴市| 大港区| 乌兰浩特市|