找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory Through Exercises; Juliusz Brzeziński Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 Galoi

[復制鏈接]
樓主: SPARK
51#
發(fā)表于 2025-3-30 09:03:03 | 只看該作者
52#
發(fā)表于 2025-3-30 13:56:13 | 只看該作者
53#
發(fā)表于 2025-3-30 16:36:11 | 只看該作者
978-3-319-72325-9Springer International Publishing AG, part of Springer Nature 2018
54#
發(fā)表于 2025-3-30 21:03:48 | 只看該作者
55#
發(fā)表于 2025-3-31 01:12:03 | 只看該作者
56#
發(fā)表于 2025-3-31 05:55:13 | 只看該作者
57#
發(fā)表于 2025-3-31 10:26:50 | 只看該作者
https://doi.org/10.1007/978-3-0348-7558-5This chapter contains the proofs to all theorems presented in the book. Only a few theorems, which are typically covered in an introductory course on groups, rings and fields are proved in the Appendix. A proof of the fundamental theorem of algebra is given in connection with the exercises in Chap. 13.
58#
發(fā)表于 2025-3-31 13:23:28 | 只看該作者
John E. Souness,Mark A. GiembyczThis chapter contains hints and answers to all exercises presented in Chaps. .–. where an answer can be expected.
59#
發(fā)表于 2025-3-31 20:25:23 | 只看該作者
Polynomials and Irreducibility,In this chapter, we present facts on zeros of polynomials and discuss some basic methods to decide whether a polynomial is irreducible or reducible, including Gauss’ lemma, the reduction of polynomials modulo prime numbers ((irreducibility over finite fields), and Eisenstein’s criterion.
60#
發(fā)表于 2025-4-1 01:18:29 | 只看該作者
Proofs of the Theorems,This chapter contains the proofs to all theorems presented in the book. Only a few theorems, which are typically covered in an introductory course on groups, rings and fields are proved in the Appendix. A proof of the fundamental theorem of algebra is given in connection with the exercises in Chap. 13.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
连平县| 城固县| 常德市| 克拉玛依市| 宜宾县| 剑川县| 黄平县| 遂溪县| 扎赉特旗| 东乌珠穆沁旗| 三门峡市| 扬中市| 苍南县| 洛南县| 龙门县| 林芝县| 中阳县| 广昌县| 芦山县| 如皋市| 阿拉尔市| 刚察县| 南皮县| 剑川县| 白玉县| 石阡县| 三原县| 聂荣县| 开封县| 夏邑县| 万年县| 天全县| 广丰县| 兴化市| 永年县| 泗阳县| 石林| 开鲁县| 衡水市| 嘉定区| 天津市|