找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory Through Exercises; Juliusz Brzeziński Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 Galoi

[復(fù)制鏈接]
樓主: SPARK
21#
發(fā)表于 2025-3-25 05:46:34 | 只看該作者
https://doi.org/10.1007/978-3-319-46729-0in the modern presentation of Galois theory. In the exercises, we find Galois groups of many field extensions and we use also use this theorem for various problems on field extensions and their automorphism groups.
22#
發(fā)表于 2025-3-25 08:04:17 | 只看該作者
Assessment and Clinical Patterns,e of the problems are suitably structured in order to introduce some interesting topics that are typically not covered in standard texts on the subject, incl. Dedekind’s duality, Tschirnhausen’s transformations and the lunes of Hippocrates.
23#
發(fā)表于 2025-3-25 14:23:38 | 只看該作者
Solving Algebraic Equations,ing roots applied to coefficients. We give examples of quantic equations for which such formulae exist (e.g. de Moivre’s quintics) and show that the ideas which work for equations of degrees up to 4 have no evident generalizations. We also briefly discuss “casus irreducibilis” related to cubic equations.
24#
發(fā)表于 2025-3-25 17:26:31 | 只看該作者
25#
發(fā)表于 2025-3-25 20:29:05 | 只看該作者
Supplementary Problems,e of the problems are suitably structured in order to introduce some interesting topics that are typically not covered in standard texts on the subject, incl. Dedekind’s duality, Tschirnhausen’s transformations and the lunes of Hippocrates.
26#
發(fā)表于 2025-3-26 02:22:44 | 只看該作者
27#
發(fā)表于 2025-3-26 08:13:18 | 只看該作者
Airline Organization in the 1980sand splitting fields of polynomials form exactly the same class. We further discuss a normal closure of a finite field extension. Galois extensions are those which are normal and separable. The separable extensions are discussed in the next chapter.
28#
發(fā)表于 2025-3-26 11:20:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:01:56 | 只看該作者
30#
發(fā)表于 2025-3-26 17:02:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凯里市| 旌德县| 鄢陵县| 宜阳县| 益阳市| 奇台县| 张掖市| 池州市| 娱乐| 关岭| 榆中县| 萍乡市| 南开区| 孝昌县| 峨边| 耒阳市| 定襄县| 靖西县| 内乡县| 临漳县| 开封县| 石棉县| 芷江| 长乐市| 五河县| 长沙县| 容城县| 衡水市| 鹤岗市| 涟水县| 莆田市| 翼城县| 壶关县| 灵台县| 九龙坡区| 平原县| 建瓯市| 元氏县| 新晃| 芜湖县| 隆林|