找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed

[復制鏈接]
樓主: emanate
41#
發(fā)表于 2025-3-28 17:26:21 | 只看該作者
Strongly Real Beauville Groups III,ny attractive geometric properties several of which are dictated by properties of the group .. A particularly interesting subclass are the ‘strongly real’ Beauville surfaces that have an analogue of complex conjugation defined on them. In this survey we discuss these objects and in particular the gr
42#
發(fā)表于 2025-3-28 20:46:58 | 只看該作者
,Arithmetic Chern–Simons Theory I,ctra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons functionals on spaces of Galois representations. In the highly speculative Sect.?., we consider the far-fetched possibility of using Chern–Simons theory to construct .-functions.
43#
發(fā)表于 2025-3-28 22:59:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:17 | 只看該作者
,Dessins d’Enfants and Brauer Configuration Algebras,relations induced by the monodromy of the dessin d’enfant. We show that the dimension of the Brauer configuration algebra associated to a dessin d’enfant and the dimension of the centre of this algebra are invariant under the action of the absolute Galois group. We give some examples of well-known a
45#
發(fā)表于 2025-3-29 08:52:50 | 只看該作者
,On the Elliptic Kashiwara–Vergne Lie Algebra,y Alekseev, Kawazumi, Kuno and Naef arising from the study of graded formality isomorphisms associated to topological fundamental groups of surfaces, and the Lie algebra . defined using mould theoretic techniques arising from multiple zeta theory by Raphael and Schneps, and show that they coincide.
46#
發(fā)表于 2025-3-29 14:12:28 | 只看該作者
47#
發(fā)表于 2025-3-29 17:11:11 | 只看該作者
48#
發(fā)表于 2025-3-29 23:00:23 | 只看該作者
49#
發(fā)表于 2025-3-30 03:45:27 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 22:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邹城市| 江永县| 河源市| 阿克| 丹棱县| 邵阳市| 定西市| 富顺县| 城步| 丹巴县| 津市市| 铜梁县| 合川市| 江门市| 会昌县| 大石桥市| 班戈县| 福清市| 定州市| 福海县| 蕉岭县| 抚松县| 垫江县| 资源县| 阿拉善盟| 三门县| 永仁县| 固安县| 南充市| 育儿| 泗阳县| 钦州市| 湘潭市| 大庆市| 仙桃市| 合江县| 霍山县| 沾化县| 怀集县| 璧山县| 沙河市|