找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed

[復(fù)制鏈接]
查看: 54413|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:58:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants
副標(biāo)題Interactions between
編輯Frank Neumann,Sibylle Schroll
視頻videohttp://file.papertrans.cn/381/380417/380417.mp4
概述Explores new connections between algebraic geometry, representation theory, group theory, number theory, and algebraic topology in connection with Galois covers, Grothendieck-Teichmüller Theory and De
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed
描述.This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on ‘Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd‘Enfants‘, which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike. ? .
出版日期Conference proceedings 2020
關(guān)鍵詞Galois covers; Grothendieck-Teichmueller theory; Dessins d‘enfants; Absolute Galois group; Moduli spaces
版次1
doihttps://doi.org/10.1007/978-3-030-51795-3
isbn_softcover978-3-030-51797-7
isbn_ebook978-3-030-51795-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants影響因子(影響力)




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants影響因子(影響力)學(xué)科排名




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants網(wǎng)絡(luò)公開度




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants被引頻次




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants被引頻次學(xué)科排名




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants年度引用




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants年度引用學(xué)科排名




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants讀者反饋




書目名稱Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:03 | 只看該作者
https://doi.org/10.1007/978-3-319-68489-5We compute the number of rational points of classifying stacks of Chevalley group schemes using the Lefschetz–Grothendieck trace formula of Behrend for .-adic cohomology of algebraic stacks. From this we also derive associated zeta functions for these classifying stacks.
板凳
發(fā)表于 2025-3-22 04:24:06 | 只看該作者
https://doi.org/10.1007/978-981-10-7650-3We give a method for the computation of the plurigenera of a product-quotient manifold, and two different types of applications of it: to the construction of Calabi-Yau threefolds and to the determination of the minimal model of a product-quotient surface of general type.
地板
發(fā)表于 2025-3-22 08:00:54 | 只看該作者
Sarah T. Lovell,Erik Stanek,Ronald RevordAn operation of joining coset diagrams for a given group, introduced by Higman and developed by Conder in connection with Hurwitz groups, is reinterpreted and generalised as a connected sum operation on dessins of a given type. A number of examples are given.
5#
發(fā)表于 2025-3-22 10:04:25 | 只看該作者
,Galois Covers, Grothendieck-Teichmüller Theory and Dessins d’Enfants - An Introduction,In this introduction, we will give a brief overview of the themes and topics of the articles in this proceedings volume and summarise each individual contribution based on the abstracts and introduction.
6#
發(fā)表于 2025-3-22 14:21:46 | 只看該作者
On the Number of Rational Points of Classifying Stacks for Chevalley Group Schemes,We compute the number of rational points of classifying stacks of Chevalley group schemes using the Lefschetz–Grothendieck trace formula of Behrend for .-adic cohomology of algebraic stacks. From this we also derive associated zeta functions for these classifying stacks.
7#
發(fā)表于 2025-3-22 18:13:08 | 只看該作者
The Pluricanonical Systems of a Product-Quotient Variety,We give a method for the computation of the plurigenera of a product-quotient manifold, and two different types of applications of it: to the construction of Calabi-Yau threefolds and to the determination of the minimal model of a product-quotient surface of general type.
8#
發(fā)表于 2025-3-23 01:13:10 | 只看該作者
Joining Dessins Together,An operation of joining coset diagrams for a given group, introduced by Higman and developed by Conder in connection with Hurwitz groups, is reinterpreted and generalised as a connected sum operation on dessins of a given type. A number of examples are given.
9#
發(fā)表于 2025-3-23 02:41:22 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
婺源县| 广西| 中西区| 庆云县| 南平市| 读书| 婺源县| 松滋市| 吉木萨尔县| 本溪市| 蓬莱市| 东明县| 政和县| 家居| 贺州市| 衡山县| 吉安县| 张家口市| 珲春市| 澳门| 普定县| 芒康县| 佛山市| 温州市| 聂拉木县| 兴业县| 中山市| 靖州| 潼关县| 呼伦贝尔市| 沙雅县| 扶余县| 东光县| 卢湾区| 胶南市| 通化市| 原平市| 达拉特旗| 连城县| 肥乡县| 苏尼特左旗|