找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Cohomology; Jean-Pierre Serre Book 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.algebraic geometry.group theory.number theor

[復(fù)制鏈接]
樓主: Disaster
11#
發(fā)表于 2025-3-23 13:31:47 | 只看該作者
https://doi.org/10.1007/978-981-99-4472-9bject” denned over .. We shall say that an object ., defined over ., is a . of . if . becomes isomorphic to . when the ground field is extended to .. The classes of such forms (for the equivalence relation defined by the .-isomorphisms) form a set ..
12#
發(fā)表于 2025-3-23 14:31:49 | 只看該作者
Nonabelian Galois cohomology,bject” denned over .. We shall say that an object ., defined over ., is a . of . if . becomes isomorphic to . when the ground field is extended to .. The classes of such forms (for the equivalence relation defined by the .-isomorphisms) form a set ..
13#
發(fā)表于 2025-3-23 22:00:00 | 只看該作者
14#
發(fā)表于 2025-3-24 00:59:33 | 只看該作者
Book 1997logy of semisimple groups, and its relation with abelian cohomology, especially in dimension 3 (Chap. III, App. 2). The bibliography has been extended, open questions have been updated (as far as possible) and several exercises have been added. In order to facilitate references, the numbering of pro
15#
發(fā)表于 2025-3-24 03:15:05 | 只看該作者
Book 1997e help of Michel Raynaud, of a course I gave at the College de France in 1962-1963. In the present edition there are numerous additions and one suppression: Verdier‘s text on the duality of profinite groups. The most important addition is the photographic reproduction of R. Steinberg‘s "Regular elem
16#
發(fā)表于 2025-3-24 08:15:21 | 只看該作者
1439-7382 64) was based on the notes, written with the help of Michel Raynaud, of a course I gave at the College de France in 1962-1963. In the present edition there are numerous additions and one suppression: Verdier‘s text on the duality of profinite groups. The most important addition is the photographic r
17#
發(fā)表于 2025-3-24 13:50:24 | 只看該作者
18#
發(fā)表于 2025-3-24 15:43:01 | 只看該作者
T. Tadano,K. Ozawa,H. Sakai,M. Osaki,H. Matsuiie, und die Pharmakologie einen festen Platz. Die erstere hat ihre entscheidende Bedeutung für die Erforschung der ?tiologie und Pathogenese aller derjenigen Psychosen, die mit einer Zerst?rung der Gehirnsubstanz einhergehen, die letzteren bei symptomatischen und toxischen Psychosen. Im konkreten Fa
19#
發(fā)表于 2025-3-24 22:53:37 | 只看該作者
20#
發(fā)表于 2025-3-25 01:59:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西青区| 孝感市| 安阳市| 肇源县| 温州市| 平罗县| 昭觉县| 博乐市| 桐城市| 朝阳市| 合川市| 原平市| 麻江县| 长治县| 无为县| 西乡县| 东乌珠穆沁旗| 耒阳市| 亚东县| 陵水| 合肥市| 崇阳县| 新兴县| 岗巴县| 沙坪坝区| 浠水县| 光山县| 新泰市| 芦溪县| 武汉市| 阿城市| 佛学| 昌都县| 麦盖提县| 小金县| 喜德县| 建昌县| 攀枝花市| 陈巴尔虎旗| 集安市| 旺苍县|