找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Cohomology; Jean-Pierre Serre Book 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.algebraic geometry.group theory.number theor

[復(fù)制鏈接]
查看: 18838|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:42:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Galois Cohomology
編輯Jean-Pierre Serre
視頻videohttp://file.papertrans.cn/381/380414/380414.mp4
概述Includes supplementary material:
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Galois Cohomology;  Jean-Pierre Serre Book 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.algebraic geometry.group theory.number theor
描述This volume is an English translation of "Cohomologie Galoisienne" . The original edition (Springer LN5, 1964) was based on the notes, written with the help of Michel Raynaud, of a course I gave at the College de France in 1962-1963. In the present edition there are numerous additions and one suppression: Verdier‘s text on the duality of profinite groups. The most important addition is the photographic reproduction of R. Steinberg‘s "Regular elements of semisimple algebraic groups", Publ. Math. LH.E.S., 1965. I am very grateful to him, and to LH.E.S., for having authorized this reproduction. Other additions include: - A proof of the Golod-Shafarevich inequality (Chap. I, App. 2). - The "resume de cours" of my 1991-1992 lectures at the College de France on Galois cohomology of k(T) (Chap. II, App.). - The "resume de cours" of my 1990-1991 lectures at the College de France on Galois cohomology of semisimple groups, and its relation with abelian cohomology, especially in dimension 3 (Chap. III, App. 2). The bibliography has been extended, open questions have been updated (as far as possible) and several exercises have been added. In order to facilitate references, the numbering of pro
出版日期Book 1997
關(guān)鍵詞algebra; algebraic geometry; group theory; number theory; algebraic group; algebraic number field; cohomol
版次1
doihttps://doi.org/10.1007/978-3-642-59141-9
isbn_softcover978-3-642-63866-4
isbn_ebook978-3-642-59141-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

書目名稱Galois Cohomology影響因子(影響力)




書目名稱Galois Cohomology影響因子(影響力)學(xué)科排名




書目名稱Galois Cohomology網(wǎng)絡(luò)公開度




書目名稱Galois Cohomology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Galois Cohomology被引頻次




書目名稱Galois Cohomology被引頻次學(xué)科排名




書目名稱Galois Cohomology年度引用




書目名稱Galois Cohomology年度引用學(xué)科排名




書目名稱Galois Cohomology讀者反饋




書目名稱Galois Cohomology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:38:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:49 | 只看該作者
https://doi.org/10.1007/978-981-32-9648-0A topological group which is the projective limit of finite groups, each given the discrete topology, is called a .. Such a group is compact and totally disconnected.
地板
發(fā)表于 2025-3-22 04:44:04 | 只看該作者
Giannis Karagiannis,Anastasios XepapadeasLet . be a field, and let . be a Galois extension of .. The Galois group Gal(.) of the extension . is a profinite group (cf. Chap. I, §1.1), and one can apply to it the methods and results of Chapter I; in particular, if Gal(.) acts on a discrete group ., the .(Gal(.) are well-defined (if . is not commutative, we assume that . = 0, 1).
5#
發(fā)表于 2025-3-22 10:29:49 | 只看該作者
6#
發(fā)表于 2025-3-22 13:32:49 | 只看該作者
7#
發(fā)表于 2025-3-22 19:36:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:39:58 | 只看該作者
978-3-642-63866-4Springer-Verlag Berlin Heidelberg 1997
9#
發(fā)表于 2025-3-23 01:47:54 | 只看該作者
Galois Cohomology978-3-642-59141-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
10#
發(fā)表于 2025-3-23 07:44:44 | 只看該作者
https://doi.org/10.1007/978-3-642-59141-9algebra; algebraic geometry; group theory; number theory; algebraic group; algebraic number field; cohomol
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台江县| 乌兰察布市| 永修县| 故城县| 江西省| 永丰县| 保亭| 手游| 墨脱县| 彰武县| 明光市| 靖西县| 新化县| 伊宁县| 炎陵县| 凤阳县| 错那县| 洪湖市| 本溪市| 唐海县| 南澳县| 镇坪县| 安远县| 德江县| 勃利县| 衡阳市| 滨州市| 日喀则市| 荔浦县| 南京市| 桓仁| 台北县| 珠海市| 英超| 祥云县| 大邑县| 大荔县| 基隆市| 河北区| 岚皋县| 大邑县|