找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Hyperbolic Manifolds; John G. Ratcliffe Textbook 2019Latest edition Springer Nature Switzerland AG 2019 Hyperbolic manifold

[復(fù)制鏈接]
查看: 18960|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:48:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Foundations of Hyperbolic Manifolds
編輯John G. Ratcliffe
視頻videohttp://file.papertrans.cn/347/346988/346988.mp4
概述Expands on the second edition by including over 40 new lemmas, theorems, and corollaries, as well as a new section dedicated to arithmetic hyperbolic groups.Offers a highly readable and self-contained
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Foundations of Hyperbolic Manifolds;  John G. Ratcliffe Textbook 2019Latest edition Springer Nature Switzerland AG 2019 Hyperbolic manifold
描述.This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This third edition greatly expands upon the second with an abundance of additional content, including a section dedicated to arithmetic hyperbolic groups. Over 40 new lemmas, theorems, and corollaries feature, along with more than 70 additional exercises. Color adds a new dimension to figures throughout..The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincaré’s fundamental polyhedron theorem..The exposition is at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading
出版日期Textbook 2019Latest edition
關(guān)鍵詞Hyperbolic manifolds; Euclidean geometry; Spherical geometry; Inversive geometry; Isotopies of hyperboli
版次3
doihttps://doi.org/10.1007/978-3-030-31597-9
isbn_softcover978-3-030-31599-3
isbn_ebook978-3-030-31597-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Foundations of Hyperbolic Manifolds影響因子(影響力)




書目名稱Foundations of Hyperbolic Manifolds影響因子(影響力)學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds網(wǎng)絡(luò)公開度




書目名稱Foundations of Hyperbolic Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds被引頻次




書目名稱Foundations of Hyperbolic Manifolds被引頻次學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds年度引用




書目名稱Foundations of Hyperbolic Manifolds年度引用學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds讀者反饋




書目名稱Foundations of Hyperbolic Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:59 | 只看該作者
第146988主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:45:06 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:06:26 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:18:00 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:45:19 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:55:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:39:17 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:52:25 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:06:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大渡口区| 林口县| 河北省| 贺兰县| 神池县| 西充县| 嵊泗县| 扎囊县| 灵川县| 丽江市| 诏安县| 永登县| 保定市| 望奎县| 长丰县| 山阴县| 长春市| 唐河县| 海丰县| 南开区| 台东市| 资阳市| 保康县| 阜宁县| 同仁县| 吴堡县| 桂平市| 嘉荫县| 轮台县| 无棣县| 平罗县| 静安区| 旺苍县| 盖州市| 遂溪县| 龙陵县| 长垣县| 冕宁县| 绥江县| 马龙县| 安泽县|