找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Hyperbolic Manifolds; John G. Ratcliffe Textbook 2019Latest edition Springer Nature Switzerland AG 2019 Hyperbolic manifold

[復(fù)制鏈接]
查看: 18967|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:48:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Foundations of Hyperbolic Manifolds
編輯John G. Ratcliffe
視頻videohttp://file.papertrans.cn/347/346988/346988.mp4
概述Expands on the second edition by including over 40 new lemmas, theorems, and corollaries, as well as a new section dedicated to arithmetic hyperbolic groups.Offers a highly readable and self-contained
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Foundations of Hyperbolic Manifolds;  John G. Ratcliffe Textbook 2019Latest edition Springer Nature Switzerland AG 2019 Hyperbolic manifold
描述.This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This third edition greatly expands upon the second with an abundance of additional content, including a section dedicated to arithmetic hyperbolic groups. Over 40 new lemmas, theorems, and corollaries feature, along with more than 70 additional exercises. Color adds a new dimension to figures throughout..The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincaré’s fundamental polyhedron theorem..The exposition is at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading
出版日期Textbook 2019Latest edition
關(guān)鍵詞Hyperbolic manifolds; Euclidean geometry; Spherical geometry; Inversive geometry; Isotopies of hyperboli
版次3
doihttps://doi.org/10.1007/978-3-030-31597-9
isbn_softcover978-3-030-31599-3
isbn_ebook978-3-030-31597-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Foundations of Hyperbolic Manifolds影響因子(影響力)




書目名稱Foundations of Hyperbolic Manifolds影響因子(影響力)學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds網(wǎng)絡(luò)公開度




書目名稱Foundations of Hyperbolic Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds被引頻次




書目名稱Foundations of Hyperbolic Manifolds被引頻次學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds年度引用




書目名稱Foundations of Hyperbolic Manifolds年度引用學(xué)科排名




書目名稱Foundations of Hyperbolic Manifolds讀者反饋




書目名稱Foundations of Hyperbolic Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:59 | 只看該作者
第146988主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:45:06 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:06:26 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:18:00 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:45:19 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:55:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:39:17 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:52:25 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:06:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇西县| 合江县| 中阳县| 蒙自县| 高邮市| 工布江达县| 稷山县| 铅山县| 开化县| 南宫市| 广南县| 淄博市| 湖南省| 栾城县| 尤溪县| 寿阳县| 自贡市| 嵊泗县| 云浮市| 鱼台县| 洛阳市| 剑川县| 岢岚县| 广安市| 抚松县| 和静县| 永泰县| 江油市| 商南县| 吉林省| 肥城市| 宁都县| 油尖旺区| 岚皋县| 务川| 泽州县| 泰兴市| 清河县| 阿坝县| 防城港市| 确山县|