找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Grothendieck Duality for Diagrams of Schemes; Joseph Lipman,Mitsuyasu Hashimoto Book 2009 Springer-Verlag Berlin Heidelberg

[復制鏈接]
查看: 20199|回復: 47
樓主
發(fā)表于 2025-3-21 17:12:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes
編輯Joseph Lipman,Mitsuyasu Hashimoto
視頻videohttp://file.papertrans.cn/347/346979/346979.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Foundations of Grothendieck Duality for Diagrams of Schemes;  Joseph Lipman,Mitsuyasu Hashimoto Book 2009 Springer-Verlag Berlin Heidelberg
描述.The first part written by Joseph Lipman, accessible to mid-level graduate students, is a full exposition of the abstract foundations of Grothendieck duality theory for schemes (twisted inverse image, tor-independent base change,...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of relations among the derived functors, for unbounded complexes over ringed spaces, of the sheaf functors tensor, hom, direct and inverse image. Included are enhancements, for quasi-compact quasi-separated schemes, of classical results such as the projection and Künneth isomorphisms. .In the second part, written independently by Mitsuyasu Hashimoto, the theory is extended to the context of diagrams of schemes. This includes, as a special case, an equivariant theory for schemes with group actions. In particular, after various basic operations on sheaves such as (derived) direct images and inverse images are set up, Grothendieck duality and flat base change for diagrams of schemes are proved. Also, dualizing complexes are studied in this context. As an application to group actions, we gen
出版日期Book 2009
關(guān)鍵詞Cohomology; Grothendieck duality; derived functors; diagram of schemes; twisted inverse-image
版次1
doihttps://doi.org/10.1007/978-3-540-85420-3
isbn_softcover978-3-540-85419-7
isbn_ebook978-3-540-85420-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes影響因子(影響力)




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes影響因子(影響力)學科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes網(wǎng)絡(luò)公開度




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes網(wǎng)絡(luò)公開度學科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes被引頻次




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes被引頻次學科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes年度引用




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes年度引用學科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes讀者反饋




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:07 | 只看該作者
第146979主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:40:41 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:54:19 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:52:04 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:18:48 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:41:59 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:13:11 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:02:51 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:40:04 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
玉溪市| 平谷区| 鄂托克旗| 陵水| 调兵山市| 延川县| 女性| 南汇区| 尼木县| 遂昌县| 洪湖市| 永嘉县| 巴楚县| 花莲市| 武强县| 侯马市| 祁阳县| 连山| 黔南| 秦安县| 祁连县| 安泽县| 安远县| 丰都县| 垫江县| 驻马店市| 平凉市| 松溪县| 苏尼特右旗| 错那县| 涪陵区| 马鞍山市| 黑龙江省| 德格县| 祁门县| 佛坪县| 潞城市| 小金县| 龙游县| 蓬安县| 武邑县|