找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Grothendieck Duality for Diagrams of Schemes; Joseph Lipman,Mitsuyasu Hashimoto Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
查看: 20202|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:12:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes
編輯Joseph Lipman,Mitsuyasu Hashimoto
視頻videohttp://file.papertrans.cn/347/346979/346979.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Foundations of Grothendieck Duality for Diagrams of Schemes;  Joseph Lipman,Mitsuyasu Hashimoto Book 2009 Springer-Verlag Berlin Heidelberg
描述.The first part written by Joseph Lipman, accessible to mid-level graduate students, is a full exposition of the abstract foundations of Grothendieck duality theory for schemes (twisted inverse image, tor-independent base change,...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of relations among the derived functors, for unbounded complexes over ringed spaces, of the sheaf functors tensor, hom, direct and inverse image. Included are enhancements, for quasi-compact quasi-separated schemes, of classical results such as the projection and Künneth isomorphisms. .In the second part, written independently by Mitsuyasu Hashimoto, the theory is extended to the context of diagrams of schemes. This includes, as a special case, an equivariant theory for schemes with group actions. In particular, after various basic operations on sheaves such as (derived) direct images and inverse images are set up, Grothendieck duality and flat base change for diagrams of schemes are proved. Also, dualizing complexes are studied in this context. As an application to group actions, we gen
出版日期Book 2009
關(guān)鍵詞Cohomology; Grothendieck duality; derived functors; diagram of schemes; twisted inverse-image
版次1
doihttps://doi.org/10.1007/978-3-540-85420-3
isbn_softcover978-3-540-85419-7
isbn_ebook978-3-540-85420-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes影響因子(影響力)




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes影響因子(影響力)學(xué)科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes網(wǎng)絡(luò)公開度




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes被引頻次




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes被引頻次學(xué)科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes年度引用




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes年度引用學(xué)科排名




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes讀者反饋




書目名稱Foundations of Grothendieck Duality for Diagrams of Schemes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:07 | 只看該作者
第146979主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:40:41 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:54:19 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:52:04 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:18:48 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:41:59 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:13:11 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:02:51 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:40:04 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 沾益县| 柳河县| 和田市| 宝应县| 广安市| 绵竹市| 洛南县| 万荣县| 郎溪县| 乡城县| 大姚县| 仁布县| 望都县| 阿合奇县| 叙永县| 界首市| 阿拉善右旗| 方山县| 综艺| 神木县| 崇州市| 无锡市| 蒙自县| 上饶市| 泾阳县| 西青区| 兴宁市| 开化县| 金平| 淮北市| 电白县| 黑河市| 醴陵市| 中西区| 大城县| 滨海县| 滦平县| 桃园县| 娱乐| 庆阳市|