找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Finitely Supported Structures; A Set Theoretical Vi Andrei Alexandru,Gabriel Ciobanu Book 2020 Springer Nature Switzerland A

[復制鏈接]
查看: 27874|回復: 55
樓主
發(fā)表于 2025-3-21 18:08:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foundations of Finitely Supported Structures
副標題A Set Theoretical Vi
編輯Andrei Alexandru,Gabriel Ciobanu
視頻videohttp://file.papertrans.cn/347/346964/346964.mp4
概述Presents a set theoretical development for the foundations of the theory of finitely supported sets and structures.Authors collect various results on topic and present them in a uniform manner.Valuabl
圖書封面Titlebook: Foundations of Finitely Supported Structures; A Set Theoretical Vi Andrei Alexandru,Gabriel Ciobanu Book 2020 Springer Nature Switzerland A
描述.This book presents a set theoretical development for the foundations of the theory of atomic and finitely supported structures. It analyzes whether a classical result can be adequately reformulated by replacing a ‘non-atomic structure‘ with an ‘atomic, finitely supported structure’. It also presents many specific properties, such as finiteness, cardinality, connectivity, fixed point, order and uniformity, of finitely supported atomic structures that do not have non-atomic correspondents.?.In the framework of finitely supported sets, the authors analyze the consistency of various forms of choice and related results. They introduce and study the notion of ‘cardinality‘ by presenting various order and arithmetic properties. Finitely supported partially ordered sets, chain complete sets, lattices and Galois connections are studied, and new fixed point, calculability and approximation properties are presented. In this framework, the authors study the finitely supported L-fuzzysubsets of a finitely supported set and the finitely supported fuzzy subgroups of a finitely supported group. Several pairwise non-equivalent definitions for the notion of ‘infinity‘ (Dedekind infinity, Mostowski
出版日期Book 2020
關鍵詞Mathematical Logic; Finitely Supported Sets; Logicality; Lattices; Galois Connections; Abstraction; Infini
版次1
doihttps://doi.org/10.1007/978-3-030-52962-8
isbn_softcover978-3-030-52964-2
isbn_ebook978-3-030-52962-8
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Foundations of Finitely Supported Structures影響因子(影響力)




書目名稱Foundations of Finitely Supported Structures影響因子(影響力)學科排名




書目名稱Foundations of Finitely Supported Structures網絡公開度




書目名稱Foundations of Finitely Supported Structures網絡公開度學科排名




書目名稱Foundations of Finitely Supported Structures被引頻次




書目名稱Foundations of Finitely Supported Structures被引頻次學科排名




書目名稱Foundations of Finitely Supported Structures年度引用




書目名稱Foundations of Finitely Supported Structures年度引用學科排名




書目名稱Foundations of Finitely Supported Structures讀者反饋




書目名稱Foundations of Finitely Supported Structures讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:34:17 | 只看該作者
第146964主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:18:08 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:54:01 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:57:26 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:01:28 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:24:38 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:56:27 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:25:26 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:03:26 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 06:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨眉山市| 离岛区| 靖江市| 金沙县| 城口县| 黄冈市| 渭源县| 上栗县| 抚州市| 瓮安县| 娱乐| 盖州市| 泉州市| 太和县| 平阳县| 双辽市| 滦平县| 游戏| 安康市| 郸城县| 固阳县| 察雅县| 安丘市| 牙克石市| 古丈县| 观塘区| 南皮县| 黎平县| 清水河县| 湖南省| 温泉县| 遂川县| 彭阳县| 青田县| 旺苍县| 潞城市| 漳浦县| 明溪县| 阳春市| 澄江县| 惠水县|