找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Finitely Supported Structures; A Set Theoretical Vi Andrei Alexandru,Gabriel Ciobanu Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
查看: 27878|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:08:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foundations of Finitely Supported Structures
副標題A Set Theoretical Vi
編輯Andrei Alexandru,Gabriel Ciobanu
視頻videohttp://file.papertrans.cn/347/346964/346964.mp4
概述Presents a set theoretical development for the foundations of the theory of finitely supported sets and structures.Authors collect various results on topic and present them in a uniform manner.Valuabl
圖書封面Titlebook: Foundations of Finitely Supported Structures; A Set Theoretical Vi Andrei Alexandru,Gabriel Ciobanu Book 2020 Springer Nature Switzerland A
描述.This book presents a set theoretical development for the foundations of the theory of atomic and finitely supported structures. It analyzes whether a classical result can be adequately reformulated by replacing a ‘non-atomic structure‘ with an ‘a(chǎn)tomic, finitely supported structure’. It also presents many specific properties, such as finiteness, cardinality, connectivity, fixed point, order and uniformity, of finitely supported atomic structures that do not have non-atomic correspondents.?.In the framework of finitely supported sets, the authors analyze the consistency of various forms of choice and related results. They introduce and study the notion of ‘cardinality‘ by presenting various order and arithmetic properties. Finitely supported partially ordered sets, chain complete sets, lattices and Galois connections are studied, and new fixed point, calculability and approximation properties are presented. In this framework, the authors study the finitely supported L-fuzzysubsets of a finitely supported set and the finitely supported fuzzy subgroups of a finitely supported group. Several pairwise non-equivalent definitions for the notion of ‘infinity‘ (Dedekind infinity, Mostowski
出版日期Book 2020
關(guān)鍵詞Mathematical Logic; Finitely Supported Sets; Logicality; Lattices; Galois Connections; Abstraction; Infini
版次1
doihttps://doi.org/10.1007/978-3-030-52962-8
isbn_softcover978-3-030-52964-2
isbn_ebook978-3-030-52962-8
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Foundations of Finitely Supported Structures影響因子(影響力)




書目名稱Foundations of Finitely Supported Structures影響因子(影響力)學(xué)科排名




書目名稱Foundations of Finitely Supported Structures網(wǎng)絡(luò)公開度




書目名稱Foundations of Finitely Supported Structures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foundations of Finitely Supported Structures被引頻次




書目名稱Foundations of Finitely Supported Structures被引頻次學(xué)科排名




書目名稱Foundations of Finitely Supported Structures年度引用




書目名稱Foundations of Finitely Supported Structures年度引用學(xué)科排名




書目名稱Foundations of Finitely Supported Structures讀者反饋




書目名稱Foundations of Finitely Supported Structures讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:34:17 | 只看該作者
第146964主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:18:08 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:54:01 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:57:26 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:01:28 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:24:38 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:56:27 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:25:26 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:03:26 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀宁县| 类乌齐县| 礼泉县| 蕲春县| 广饶县| 禄丰县| 绍兴市| 常宁市| 搜索| 喜德县| 若尔盖县| 玛纳斯县| 合肥市| 平果县| 安陆市| 弋阳县| 华容县| 洛阳市| 望奎县| 南昌县| 晋中市| 呼和浩特市| 张北县| 城市| 彭山县| 衡东县| 会宁县| 靖宇县| 陕西省| 砀山县| 西昌市| 涿鹿县| 弥勒县| 锡林郭勒盟| 公主岭市| 淮阳县| 沧州市| 资兴市| 宜州市| 太白县| 博白县|