找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundation Models for Natural Language Processing; Pre-trained Language Gerhard Paa?,Sven Giesselbach Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if a

[復(fù)制鏈接]
查看: 13024|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:31:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Foundation Models for Natural Language Processing
副標(biāo)題Pre-trained Language
編輯Gerhard Paa?,Sven Giesselbach
視頻videohttp://file.papertrans.cn/347/346783/346783.mp4
概述Offers an overview of pre-trained language models such as BERT, GPT, and sequence-to-sequence Transformer.Explains the key techniques to improve the performance of pre-trained models.Presents advanced
叢書名稱Artificial Intelligence: Foundations, Theory, and Algorithms
圖書封面Titlebook: Foundation Models for Natural Language Processing; Pre-trained Language Gerhard Paa?,Sven Giesselbach Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if a
描述.This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts.?.Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models.?.After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Pre-trained Language Models; Deep Learning; Natural Language Processing; Transformer Models; BERT; GPT; At
版次1
doihttps://doi.org/10.1007/978-3-031-23190-2
isbn_softcover978-3-031-23192-6
isbn_ebook978-3-031-23190-2Series ISSN 2365-3051 Series E-ISSN 2365-306X
issn_series 2365-3051
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

書目名稱Foundation Models for Natural Language Processing影響因子(影響力)




書目名稱Foundation Models for Natural Language Processing影響因子(影響力)學(xué)科排名




書目名稱Foundation Models for Natural Language Processing網(wǎng)絡(luò)公開度




書目名稱Foundation Models for Natural Language Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foundation Models for Natural Language Processing被引頻次




書目名稱Foundation Models for Natural Language Processing被引頻次學(xué)科排名




書目名稱Foundation Models for Natural Language Processing年度引用




書目名稱Foundation Models for Natural Language Processing年度引用學(xué)科排名




書目名稱Foundation Models for Natural Language Processing讀者反饋




書目名稱Foundation Models for Natural Language Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:48 | 只看該作者
第146783主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:44:56 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:41:38 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:02:40 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:00:47 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:05:45 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:12:10 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:36:59 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:36:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富源县| 突泉县| 金沙县| 拉孜县| 济南市| 通化县| 多伦县| 云林县| 南漳县| 诸暨市| 历史| 大名县| 台东市| 黄大仙区| 孟村| 昭觉县| 镇巴县| 津市市| 九江市| 调兵山市| 科技| 大姚县| 荔浦县| 泰安市| 三河市| 太白县| 泌阳县| 昌图县| 瓮安县| 鄯善县| 镇平县| 邮箱| 柳州市| 北宁市| 吉木萨尔县| 神木县| 宣城市| 彭阳县| 鱼台县| 大名县| 安图县|