找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundation Models for Natural Language Processing; Pre-trained Language Gerhard Paa?,Sven Giesselbach Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if a

[復(fù)制鏈接]
查看: 13029|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:31:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Foundation Models for Natural Language Processing
副標(biāo)題Pre-trained Language
編輯Gerhard Paa?,Sven Giesselbach
視頻videohttp://file.papertrans.cn/347/346783/346783.mp4
概述Offers an overview of pre-trained language models such as BERT, GPT, and sequence-to-sequence Transformer.Explains the key techniques to improve the performance of pre-trained models.Presents advanced
叢書(shū)名稱Artificial Intelligence: Foundations, Theory, and Algorithms
圖書(shū)封面Titlebook: Foundation Models for Natural Language Processing; Pre-trained Language Gerhard Paa?,Sven Giesselbach Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if a
描述.This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts.?.Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models.?.After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Pre-trained Language Models; Deep Learning; Natural Language Processing; Transformer Models; BERT; GPT; At
版次1
doihttps://doi.org/10.1007/978-3-031-23190-2
isbn_softcover978-3-031-23192-6
isbn_ebook978-3-031-23190-2Series ISSN 2365-3051 Series E-ISSN 2365-306X
issn_series 2365-3051
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

書(shū)目名稱Foundation Models for Natural Language Processing影響因子(影響力)




書(shū)目名稱Foundation Models for Natural Language Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱Foundation Models for Natural Language Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Foundation Models for Natural Language Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Foundation Models for Natural Language Processing被引頻次




書(shū)目名稱Foundation Models for Natural Language Processing被引頻次學(xué)科排名




書(shū)目名稱Foundation Models for Natural Language Processing年度引用




書(shū)目名稱Foundation Models for Natural Language Processing年度引用學(xué)科排名




書(shū)目名稱Foundation Models for Natural Language Processing讀者反饋




書(shū)目名稱Foundation Models for Natural Language Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:48 | 只看該作者
第146783主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:44:56 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:41:38 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:02:40 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:00:47 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:05:45 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:12:10 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:36:59 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:36:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萝北县| 徐水县| 称多县| 英山县| 佳木斯市| 淳化县| 林芝县| 密云县| 容城县| 兴隆县| 鄂尔多斯市| 安溪县| 嘉善县| 高邑县| 贵南县| 大关县| 洪湖市| 邹城市| 延津县| 莆田市| 东平县| 元谋县| 新巴尔虎右旗| 龙海市| 和平区| 太湖县| 蓝田县| 开原市| 丹凤县| 阳曲县| 栖霞市| 永寿县| 湟中县| 漠河县| 巴东县| 辽中县| 天镇县| 两当县| 定州市| 湟源县| 理塘县|