找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finitely Supported Mathematics; An Introduction Andrei Alexandru,Gabriel Ciobanu Book 2016 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
查看: 18475|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:12:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Finitely Supported Mathematics
副標(biāo)題An Introduction
編輯Andrei Alexandru,Gabriel Ciobanu
視頻videohttp://file.papertrans.cn/344/343700/343700.mp4
概述Presents an alternative set theory dealing with a more relaxed notion of infiniteness.Shows the principles of constructing FSM have historical roots in the definition of Tarski logical notions and in
圖書封面Titlebook: Finitely Supported Mathematics; An Introduction Andrei Alexandru,Gabriel Ciobanu Book 2016 Springer International Publishing Switzerland 20
描述.In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, ‘sets‘ are replaced either by `invariant sets‘ (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets‘ (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures‘ in which infinite algebraic structures are characterized by using their finite supports. ..After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots bot
出版日期Book 2016
關(guān)鍵詞Fraenkel-Mostowski (FM) Set Theory; Finitely Supported Mathematics; Process Algebra; Semantics; Algebrai
版次1
doihttps://doi.org/10.1007/978-3-319-42282-4
isbn_softcover978-3-319-82545-8
isbn_ebook978-3-319-42282-4
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Finitely Supported Mathematics影響因子(影響力)




書目名稱Finitely Supported Mathematics影響因子(影響力)學(xué)科排名




書目名稱Finitely Supported Mathematics網(wǎng)絡(luò)公開度




書目名稱Finitely Supported Mathematics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Finitely Supported Mathematics被引頻次




書目名稱Finitely Supported Mathematics被引頻次學(xué)科排名




書目名稱Finitely Supported Mathematics年度引用




書目名稱Finitely Supported Mathematics年度引用學(xué)科排名




書目名稱Finitely Supported Mathematics讀者反饋




書目名稱Finitely Supported Mathematics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:49:38 | 只看該作者
第143700主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:19:58 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:56:28 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:55:12 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:08:52 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:23:06 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:44:52 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:34:05 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:49:58 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沐川县| 诸暨市| 如东县| 雅江县| 乐山市| 安国市| 平武县| 翼城县| 都昌县| 桐柏县| 旬阳县| 上虞市| 张家港市| 巴林右旗| 景洪市| 马鞍山市| 美姑县| 黑河市| 太白县| 汾阳市| 宜兴市| 玉环县| 启东市| 合阳县| 喜德县| 永春县| 靖宇县| 潞城市| 游戏| 陕西省| 广宗县| 兰坪| 岑巩县| 梁平县| 姜堰市| 年辖:市辖区| 福海县| 曲阜市| 哈密市| 广饶县| 科技|