找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Finitely Supported Mathematics; An Introduction Andrei Alexandru,Gabriel Ciobanu Book 2016 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
查看: 18476|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:12:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Finitely Supported Mathematics
副標(biāo)題An Introduction
編輯Andrei Alexandru,Gabriel Ciobanu
視頻videohttp://file.papertrans.cn/344/343700/343700.mp4
概述Presents an alternative set theory dealing with a more relaxed notion of infiniteness.Shows the principles of constructing FSM have historical roots in the definition of Tarski logical notions and in
圖書(shū)封面Titlebook: Finitely Supported Mathematics; An Introduction Andrei Alexandru,Gabriel Ciobanu Book 2016 Springer International Publishing Switzerland 20
描述.In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, ‘sets‘ are replaced either by `invariant sets‘ (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets‘ (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures‘ in which infinite algebraic structures are characterized by using their finite supports. ..After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots bot
出版日期Book 2016
關(guān)鍵詞Fraenkel-Mostowski (FM) Set Theory; Finitely Supported Mathematics; Process Algebra; Semantics; Algebrai
版次1
doihttps://doi.org/10.1007/978-3-319-42282-4
isbn_softcover978-3-319-82545-8
isbn_ebook978-3-319-42282-4
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書(shū)目名稱(chēng)Finitely Supported Mathematics影響因子(影響力)




書(shū)目名稱(chēng)Finitely Supported Mathematics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Finitely Supported Mathematics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Finitely Supported Mathematics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Finitely Supported Mathematics被引頻次




書(shū)目名稱(chēng)Finitely Supported Mathematics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Finitely Supported Mathematics年度引用




書(shū)目名稱(chēng)Finitely Supported Mathematics年度引用學(xué)科排名




書(shū)目名稱(chēng)Finitely Supported Mathematics讀者反饋




書(shū)目名稱(chēng)Finitely Supported Mathematics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:49:38 | 只看該作者
第143700主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:19:58 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:56:28 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:55:12 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:08:52 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:23:06 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:44:52 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:34:05 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:49:58 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 普兰店市| 高要市| 资源县| 安吉县| 广元市| 靖远县| 黄浦区| 姚安县| 河北省| 招远市| 健康| 龙岩市| 隆尧县| 娄底市| 和静县| 梨树县| 龙海市| 惠州市| 南阳市| 资阳市| 嘉鱼县| 鲁山县| 佛山市| 华容县| 三门峡市| 兴仁县| 池州市| 江阴市| 和顺县| 西贡区| 康乐县| 鄂托克前旗| 共和县| 离岛区| 河曲县| 西丰县| 新郑市| 三原县| 镇江市| 大余县|