找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Field Arithmetic; Michael D. Fried,Moshe Jarden Book 19861st edition Springer-Verlag Berlin Heidelberg 1986 Absolute Galois Groups.Galois

[復(fù)制鏈接]
查看: 48921|回復(fù): 63
樓主
發(fā)表于 2025-3-21 18:26:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Field Arithmetic
編輯Michael D. Fried,Moshe Jarden
視頻videohttp://file.papertrans.cn/343/342577/342577.mp4
概述Second revised and substantially enlarged edition of the classical Ergebnisse Vol. 11 "Field Arithmetic", published in 1986.The second edition takes into account all the important new developments in
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Field Arithmetic;  Michael D. Fried,Moshe Jarden Book 19861st edition Springer-Verlag Berlin Heidelberg 1986 Absolute Galois Groups.Galois
描述.Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements...Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of
出版日期Book 19861st edition
關(guān)鍵詞Absolute Galois Groups; Galois Stratification; Galois group; Galois theory; Grad; Hilbertian Fields; Irred
版次1
doihttps://doi.org/10.1007/978-3-662-07216-5
isbn_ebook978-3-662-07216-5Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1986
The information of publication is updating

書目名稱Field Arithmetic影響因子(影響力)




書目名稱Field Arithmetic影響因子(影響力)學(xué)科排名




書目名稱Field Arithmetic網(wǎng)絡(luò)公開度




書目名稱Field Arithmetic網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Field Arithmetic被引頻次




書目名稱Field Arithmetic被引頻次學(xué)科排名




書目名稱Field Arithmetic年度引用




書目名稱Field Arithmetic年度引用學(xué)科排名




書目名稱Field Arithmetic讀者反饋




書目名稱Field Arithmetic讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:01 | 只看該作者
第142577主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:16:08 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:09:39 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:30:03 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:01:47 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:53:28 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:22:15 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:54:28 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:51:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南安市| 和平区| 北川| 安宁市| 类乌齐县| 农安县| 河东区| 林口县| 万载县| 姜堰市| 三明市| 开鲁县| 温泉县| 龙川县| 长乐市| 合水县| 怀远县| 景宁| 宿松县| 湘阴县| 九龙城区| 双牌县| 抚宁县| 三明市| 商水县| 景泰县| 辉县市| 波密县| 秦安县| 珲春市| 兴文县| 涿州市| 新巴尔虎右旗| 五华县| 六枝特区| 奈曼旗| 新竹市| 岚皋县| 正定县| 涞水县| 阿合奇县|