找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empowering the Public Sector with Generative AI; From Strategy and De Sanjeev Pulapaka,Srinath Godavarthi,Sherry Ding Book 2024 Sanjeev Pul

[復(fù)制鏈接]
查看: 13800|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:04:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Empowering the Public Sector with Generative AI
副標(biāo)題From Strategy and De
編輯Sanjeev Pulapaka,Srinath Godavarthi,Sherry Ding
視頻videohttp://file.papertrans.cn/321/320585/320585.mp4
概述Provides simplified explanations .Includes different types of use cases, and architecture patterns for various types of Generative AI applications.Covers key considerations and frameworks to adopt Gen
圖書封面Titlebook: Empowering the Public Sector with Generative AI; From Strategy and De Sanjeev Pulapaka,Srinath Godavarthi,Sherry Ding Book 2024 Sanjeev Pul
描述.This is your guide book to Generative AI (GenAI) and its application in addressing real-world challenges within the public sector. The book addresses a range of topics from GenAI concepts and strategy to public sector use cases, architecture patterns, and implementation best practices. With a general background in technology and the public sector, you will be able to understand the concepts in this book...The book will help you develop a deeper understanding of GenAI and learn how GenAI differs from traditional AI. You will explore best practices such as prompt engineering, and fine-tuning, and architectural patterns such as Retrieval Augmented Generation (RAG). And you will discover specific nuances, considerations, and strategies for implementation in a public sector organization.?..You will understand how to apply these concepts in a public sector setting and address industry-specific challenges and problems by studying a variety of use cases included in the book in the areas of content generation, chatbots, summarization, and program management...?..What You Will Learn.. .GenAI concepts and how GenAI differs?from traditional AI/ML?. .Prompt engineering, fine-tuning, RAG, and c
出版日期Book 2024
關(guān)鍵詞Generative AI; Machine Learning; Large language models; Public Sector; Prompt Engineering; Retrieval Augm
版次1
doihttps://doi.org/10.1007/979-8-8688-0473-1
isbn_softcover979-8-8688-0472-4
isbn_ebook979-8-8688-0473-1
copyrightSanjeev Pulapaka, Srinath Godavarthi and Dr. Sherry Ding 2024
The information of publication is updating

書目名稱Empowering the Public Sector with Generative AI影響因子(影響力)




書目名稱Empowering the Public Sector with Generative AI影響因子(影響力)學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI網(wǎng)絡(luò)公開度




書目名稱Empowering the Public Sector with Generative AI網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI被引頻次




書目名稱Empowering the Public Sector with Generative AI被引頻次學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI年度引用




書目名稱Empowering the Public Sector with Generative AI年度引用學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI讀者反饋




書目名稱Empowering the Public Sector with Generative AI讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:42:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:32 | 只看該作者
http://image.papertrans.cn/f/image/320585.jpg
5#
發(fā)表于 2025-3-22 09:23:28 | 只看該作者
https://doi.org/10.1007/978-1-4684-1740-1nd then it generates code?” The professor had this strange look and responded, “No, you need to develop the code, compile, and run it.” Getting a computer to generate code using a flowchart was a silly thought or a brilliant thought at the time depending on how you look at it. Here we are, thirty or
6#
發(fā)表于 2025-3-22 15:53:48 | 只看該作者
https://doi.org/10.1007/978-4-431-55840-8ook, however, is primarily about the application of GenAI to the public sector. At its core, the mission of public sector organizations (PSOs) is to ensure the safety, well-being, and livelihood of the constituents they serve. However, delivering on this critical mission is an enormously complex und
7#
發(fā)表于 2025-3-22 19:01:59 | 只看該作者
8#
發(fā)表于 2025-3-22 22:17:40 | 只看該作者
https://doi.org/10.1007/978-0-387-47530-1rch, and reporting. In the next four chapters, we will go into greater detail on each of these applications using concepts described in Chapter . such as prompt engineering and Retrieval-Augmented Generation. In this chapter, we will describe how GenAI applications can help with content generation t
9#
發(fā)表于 2025-3-23 01:25:55 | 只看該作者
https://doi.org/10.1007/978-94-010-9529-7 generation, and code generation, each with slightly different architectures, implementation considerations, and use case examples. In this chapter, we’ll take a deeper look at another widely adopted use case: chatbots.
10#
發(fā)表于 2025-3-23 05:54:37 | 只看該作者
https://doi.org/10.1007/3-540-58671-7load is a constant struggle. Government agencies, research institutions, and public organizations are inundated with massive volumes of data, reports, documents, and communications on a daily basis. As an example, the US public sector is potentially the largest producer of data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晴隆县| 天祝| 左贡县| 仁怀市| 桂平市| 来宾市| 健康| 河曲县| 红原县| 买车| 大名县| 镶黄旗| 海伦市| 石楼县| 博湖县| 长武县| 阿拉尔市| 嘉黎县| 高唐县| 巍山| 田东县| 库伦旗| 新津县| 偏关县| 桂平市| 石泉县| 图片| 故城县| 梅州市| 辉南县| 旬阳县| 阜城县| 双鸭山市| 衡东县| 方山县| 金山区| 新丰县| 师宗县| 昂仁县| 科尔| 张家川|