找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empowering the Public Sector with Generative AI; From Strategy and De Sanjeev Pulapaka,Srinath Godavarthi,Sherry Ding Book 2024 Sanjeev Pul

[復(fù)制鏈接]
查看: 13808|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:04:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Empowering the Public Sector with Generative AI
副標(biāo)題From Strategy and De
編輯Sanjeev Pulapaka,Srinath Godavarthi,Sherry Ding
視頻videohttp://file.papertrans.cn/321/320585/320585.mp4
概述Provides simplified explanations .Includes different types of use cases, and architecture patterns for various types of Generative AI applications.Covers key considerations and frameworks to adopt Gen
圖書封面Titlebook: Empowering the Public Sector with Generative AI; From Strategy and De Sanjeev Pulapaka,Srinath Godavarthi,Sherry Ding Book 2024 Sanjeev Pul
描述.This is your guide book to Generative AI (GenAI) and its application in addressing real-world challenges within the public sector. The book addresses a range of topics from GenAI concepts and strategy to public sector use cases, architecture patterns, and implementation best practices. With a general background in technology and the public sector, you will be able to understand the concepts in this book...The book will help you develop a deeper understanding of GenAI and learn how GenAI differs from traditional AI. You will explore best practices such as prompt engineering, and fine-tuning, and architectural patterns such as Retrieval Augmented Generation (RAG). And you will discover specific nuances, considerations, and strategies for implementation in a public sector organization.?..You will understand how to apply these concepts in a public sector setting and address industry-specific challenges and problems by studying a variety of use cases included in the book in the areas of content generation, chatbots, summarization, and program management...?..What You Will Learn.. .GenAI concepts and how GenAI differs?from traditional AI/ML?. .Prompt engineering, fine-tuning, RAG, and c
出版日期Book 2024
關(guān)鍵詞Generative AI; Machine Learning; Large language models; Public Sector; Prompt Engineering; Retrieval Augm
版次1
doihttps://doi.org/10.1007/979-8-8688-0473-1
isbn_softcover979-8-8688-0472-4
isbn_ebook979-8-8688-0473-1
copyrightSanjeev Pulapaka, Srinath Godavarthi and Dr. Sherry Ding 2024
The information of publication is updating

書目名稱Empowering the Public Sector with Generative AI影響因子(影響力)




書目名稱Empowering the Public Sector with Generative AI影響因子(影響力)學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI網(wǎng)絡(luò)公開度




書目名稱Empowering the Public Sector with Generative AI網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI被引頻次




書目名稱Empowering the Public Sector with Generative AI被引頻次學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI年度引用




書目名稱Empowering the Public Sector with Generative AI年度引用學(xué)科排名




書目名稱Empowering the Public Sector with Generative AI讀者反饋




書目名稱Empowering the Public Sector with Generative AI讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:42:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:32 | 只看該作者
http://image.papertrans.cn/f/image/320585.jpg
5#
發(fā)表于 2025-3-22 09:23:28 | 只看該作者
https://doi.org/10.1007/978-1-4684-1740-1nd then it generates code?” The professor had this strange look and responded, “No, you need to develop the code, compile, and run it.” Getting a computer to generate code using a flowchart was a silly thought or a brilliant thought at the time depending on how you look at it. Here we are, thirty or
6#
發(fā)表于 2025-3-22 15:53:48 | 只看該作者
https://doi.org/10.1007/978-4-431-55840-8ook, however, is primarily about the application of GenAI to the public sector. At its core, the mission of public sector organizations (PSOs) is to ensure the safety, well-being, and livelihood of the constituents they serve. However, delivering on this critical mission is an enormously complex und
7#
發(fā)表于 2025-3-22 19:01:59 | 只看該作者
8#
發(fā)表于 2025-3-22 22:17:40 | 只看該作者
https://doi.org/10.1007/978-0-387-47530-1rch, and reporting. In the next four chapters, we will go into greater detail on each of these applications using concepts described in Chapter . such as prompt engineering and Retrieval-Augmented Generation. In this chapter, we will describe how GenAI applications can help with content generation t
9#
發(fā)表于 2025-3-23 01:25:55 | 只看該作者
https://doi.org/10.1007/978-94-010-9529-7 generation, and code generation, each with slightly different architectures, implementation considerations, and use case examples. In this chapter, we’ll take a deeper look at another widely adopted use case: chatbots.
10#
發(fā)表于 2025-3-23 05:54:37 | 只看該作者
https://doi.org/10.1007/3-540-58671-7load is a constant struggle. Government agencies, research institutions, and public organizations are inundated with massive volumes of data, reports, documents, and communications on a daily basis. As an example, the US public sector is potentially the largest producer of data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中西区| 华蓥市| 凤城市| 女性| 内丘县| 余干县| 宜宾市| 涿州市| 进贤县| 合水县| 涪陵区| 东光县| 九龙坡区| 明星| 聊城市| 伊金霍洛旗| 安化县| 永丰县| 巧家县| 张家川| 汝阳县| 阳春市| 西青区| 七台河市| 安宁市| 汪清县| 略阳县| 呼伦贝尔市| 论坛| 偏关县| 黑龙江省| 伊川县| 聊城市| 磐安县| 平度市| 攀枝花市| 达日县| 游戏| 卢龙县| 通城县| 江源县|