找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Exploring Service Science; 10th International C Henriqueta Nóvoa,Monica Dr?goicea,Niklas Kühl Conference proceedings 2020 The Editor(s) (if

[復(fù)制鏈接]
樓主: 不服從
41#
發(fā)表于 2025-3-28 17:13:57 | 只看該作者
42#
發(fā)表于 2025-3-28 20:31:22 | 只看該作者
K. Tawada,M. Toyoda,Y. Imafuku,A. Yamada an Italian airline by applying a Principal Component Analysis (PCA) - Data Envelopment Analysis (DEA) model and we verify which airline routes are ranked among the most efficient ones by also including, in the proposed model, the presence of this undesirable output.
43#
發(fā)表于 2025-3-28 22:56:03 | 只看該作者
https://doi.org/10.1007/978-3-662-39761-9 (k-NN) and the Singular Value Decomposition (SVD), with Feed-Forward Neural Networks; given these assumptions, we finally demonstrated that a “Deep” Neural architecture could achieve better results in terms of “l(fā)oss” generated by the model, laying the foundations for a new, innovative paradigm in service recommendation science.
44#
發(fā)表于 2025-3-29 03:58:12 | 只看該作者
45#
發(fā)表于 2025-3-29 07:31:43 | 只看該作者
46#
發(fā)表于 2025-3-29 12:47:56 | 只看該作者
47#
發(fā)表于 2025-3-29 18:29:54 | 只看該作者
Quality and Efficiency Evaluation of Airlines Services an Italian airline by applying a Principal Component Analysis (PCA) - Data Envelopment Analysis (DEA) model and we verify which airline routes are ranked among the most efficient ones by also including, in the proposed model, the presence of this undesirable output.
48#
發(fā)表于 2025-3-29 20:59:39 | 只看該作者
Collaborative Recommendations with Deep Feed-Forward Networks: An Approach to Service Personalizatio (k-NN) and the Singular Value Decomposition (SVD), with Feed-Forward Neural Networks; given these assumptions, we finally demonstrated that a “Deep” Neural architecture could achieve better results in terms of “l(fā)oss” generated by the model, laying the foundations for a new, innovative paradigm in service recommendation science.
49#
發(fā)表于 2025-3-30 03:20:08 | 只看該作者
50#
發(fā)表于 2025-3-30 04:24:44 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
毕节市| 基隆市| 常州市| 陆河县| 永丰县| 金坛市| 石泉县| 自治县| 宁波市| 甘谷县| 通榆县| 安塞县| 库伦旗| 伊金霍洛旗| 丹阳市| 什邡市| 宣化县| 淮北市| 合江县| 衡阳市| 临颍县| 平乐县| 格尔木市| 名山县| 子洲县| 荃湾区| 杭锦后旗| 云南省| 镇巴县| 澎湖县| 永宁县| 成都市| 民和| 安新县| 桃园县| 青龙| 马尔康县| 深水埗区| 景洪市| 泾川县| 马尔康县|