找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Expository Moments for Pseudo Distributions; Haruhiko Ogasawara Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 21147|回復(fù): 44
樓主
發(fā)表于 2025-3-21 20:05:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Expository Moments for Pseudo Distributions
編輯Haruhiko Ogasawara
視頻videohttp://file.papertrans.cn/320/319758/319758.mp4
概述Shows explications and extensions of the pseudo normal (PN) family of distributions recently‘proposed by the author.Gives the moments of the PN without omitting proofs with didactic explanations using
叢書(shū)名稱Behaviormetrics: Quantitative Approaches to Human Behavior
圖書(shū)封面Titlebook: Expository Moments for Pseudo Distributions;  Haruhiko Ogasawara Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This book provides expository derivations for moments of a family of pseudo distributions, which is an extended family of distributions including the pseudo normal (PN) distributions recently proposed by the author. The PN includes the skew normal (SN) derived by A. Azzalini and the closed skew normal (CSN) obtained by A. Domínguez-Molina, G. González-Farías, and A. K. Gupta as special cases. It is known that the CSN includes the SN and other various distributions as special cases, which shows that the PN has a wider variety of distributions. The SN and CSN have symmetric and skewed asymmetric distributions. However, symmetric distributions are restricted to normal ones. On the other hand, symmetric distributions in the PN can be non-normal as well as normal. In this book, for the non-normal symmetric distributions, the term “kurtic normal (KN)” is used, where the coined word “kurtic” indicates “mesokurtic, leptokurtic, or platykurtic” used in statistics. The variety of the PN was made possible using stripe (tigerish) and sectional truncation in univariate and multivariate distributions, respectively. The proofs of the moments and associated results are not omitted and are often g
出版日期Book 2022
關(guān)鍵詞Stripe Truncation; Sectional Truncation; Pseudo Normal; Pseudo Distributions; Skew Normal; Closed Skew No
版次1
doihttps://doi.org/10.1007/978-981-19-3525-1
isbn_softcover978-981-19-3527-5
isbn_ebook978-981-19-3525-1Series ISSN 2524-4027 Series E-ISSN 2524-4035
issn_series 2524-4027
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱Expository Moments for Pseudo Distributions影響因子(影響力)




書(shū)目名稱Expository Moments for Pseudo Distributions影響因子(影響力)學(xué)科排名




書(shū)目名稱Expository Moments for Pseudo Distributions網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Expository Moments for Pseudo Distributions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Expository Moments for Pseudo Distributions被引頻次




書(shū)目名稱Expository Moments for Pseudo Distributions被引頻次學(xué)科排名




書(shū)目名稱Expository Moments for Pseudo Distributions年度引用




書(shū)目名稱Expository Moments for Pseudo Distributions年度引用學(xué)科排名




書(shū)目名稱Expository Moments for Pseudo Distributions讀者反饋




書(shū)目名稱Expository Moments for Pseudo Distributions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:20:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:20:29 | 只看該作者
The Pseudo-Normal (PN) Distribution,rmal (CSN), where the CSN is an extension of the SN and includes various important distributions. Note that the SN and CSN use single truncation in typically hidden truncation models while the PN uses sectional truncation introduced by Ogasawara (Ogasawara in Journal of Multivariate Analysis (online
5#
發(fā)表于 2025-3-22 12:26:28 | 只看該作者
The Kurtic-Normal (KN) Distribution, platykurtic” used in statistics. Note that in the skew-normal (SN) and closed skew-normal (CSN), when a distribution is symmetric, it is always normal. On the other hand, though the distribution of KN is symmetric, it is not necessarily normal. Moments and cumulants for some simple KN distributions
6#
發(fā)表于 2025-3-22 13:31:46 | 只看該作者
The Normal-Normal (NN) Distribution,normal distribution in place of the usual normal under sectional truncation. Though the discrete normal distribution takes normal densities at finite/infinite points approximating the truncated normal, the discrete distribution is not necessarily a truncated one. Their moment generating function and
7#
發(fā)表于 2025-3-22 17:23:19 | 只看該作者
8#
發(fā)表于 2025-3-23 00:30:41 | 只看該作者
The Truncated Pseudo-Normal (TPN) and Truncated Normal-Normal (TNN) Distributions, typically hidden variable(s) in the PN are subject to truncation except the untruncated cases giving observable normal distributions of less interest. When the observable variables are sectionally truncated, we have the truncated pseudo normal (TPN) and normal-normal (TNN). The properties of the TP
9#
發(fā)表于 2025-3-23 05:08:15 | 只看該作者
10#
發(fā)表于 2025-3-23 06:13:05 | 只看該作者
Multivariate Measures of Skewness and Kurtosis,trix (commutator) . with several explicit expressions of . are presented, where the methods of proofs using the elements in matrix equations are emphasized with the by-products of the explicit expressions of the elements. The vectors of the multivariate cumulants up to the fourth order are shown by
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
调兵山市| 赣榆县| 安国市| 高碑店市| 宜阳县| 香格里拉县| 新河县| 银川市| 剑川县| 深圳市| 东明县| 营山县| 绥棱县| 伊通| 达孜县| 湘西| 宜阳县| 崇州市| 公主岭市| 湟源县| 佛冈县| 抚宁县| 阳信县| 汝南县| 靖江市| 鲜城| 电白县| 玛纳斯县| 湖口县| 汝州市| 舞阳县| 江都市| 稷山县| 临江市| 克东县| 琼中| 四川省| 巴南区| 平邑县| 凌海市| 呼图壁县|