找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Expository Moments for Pseudo Distributions; Haruhiko Ogasawara Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: Eisenhower
11#
發(fā)表于 2025-3-23 12:06:13 | 只看該作者
2524-4027 PN without omitting proofs with didactic explanations using.This book provides expository derivations for moments of a family of pseudo distributions, which is an extended family of distributions including the pseudo normal (PN) distributions recently proposed by the author. The PN includes the ske
12#
發(fā)表于 2025-3-23 17:55:36 | 只看該作者
https://doi.org/10.1007/978-94-6300-456-5l. On the other hand, though the distribution of KN is symmetric, it is not necessarily normal. Moments and cumulants for some simple KN distributions with zero skewness by construction are obtained. Some limiting values of the moments, when the values of truncation/selection points approach 0 or infinity, are shown.
13#
發(fā)表于 2025-3-23 18:13:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:13:15 | 只看該作者
IgE Immunotherapy Against Cancer,en in Chap. .. Decompositions similar to the Henze theorem were derived using the moment generating functions giving the third proof of the Henze theorem. Results when the untruncated normal variables are added or reduced are shown. For associated results, forms of the multivariate Hermite polynomials are given.
15#
發(fā)表于 2025-3-24 03:57:25 | 只看該作者
16#
發(fā)表于 2025-3-24 09:38:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:00 | 只看該作者
18#
發(fā)表于 2025-3-24 15:41:41 | 只看該作者
https://doi.org/10.1007/978-3-030-37908-7ined using the weighted or incomplete Kummer confluent hypergeometric function given by Ogasawara [J Multivar Anal [.]) to have the absolute moments. The multivariate bpc distribution is also derived to obtain the absolute moments of the normal vector under sectional truncation, which is the multivariate version of stripe truncation.
19#
發(fā)表于 2025-3-24 19:11:00 | 只看該作者
20#
發(fā)表于 2025-3-24 23:54:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通江县| 沂水县| 清流县| 天峻县| 陇西县| 聂拉木县| 万荣县| 平阴县| 唐海县| 贵州省| 福清市| 隆尧县| 确山县| 太仆寺旗| 乌恰县| 鹿邑县| 白玉县| 阿拉善盟| 章丘市| 淮南市| 达孜县| 长春市| 雷州市| 涿州市| 邵东县| 南木林县| 江孜县| 安泽县| 固始县| 临沧市| 康保县| 盐源县| 英吉沙县| 屯门区| 洪泽县| 政和县| 关岭| 巨鹿县| 邵武市| 邵阳市| 沙雅县|