找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Curvature; James Casey Textbook 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996 Gaussian curvatu

[復(fù)制鏈接]
樓主: ODDS
51#
發(fā)表于 2025-3-30 08:54:35 | 只看該作者
52#
發(fā)表于 2025-3-30 12:42:34 | 只看該作者
53#
發(fā)表于 2025-3-30 17:42:36 | 只看該作者
Surfaces,on to the geometry of surfaces, which is even more fascinating. We will proceed in our usual manner, moving from intuitions to concepts, and exploring the geometrical phenomena by means of simple experiments. Our discussion of surface geometry begins with a search for a good definition of the concep
54#
發(fā)表于 2025-3-30 21:34:35 | 只看該作者
55#
發(fā)表于 2025-3-31 03:26:29 | 只看該作者
Intrinsic Geometry of a Surface,e also, they are preserved under all deformations. (Some examples of deformations of surfaces were studied at the end of Chapter 11.) There is a broader class of properties that are intimately bound up with the geometry of the surface and that are preserved under a large subclass of homeomorphisms.
56#
發(fā)表于 2025-3-31 09:04:07 | 只看該作者
Gauss (1777-1855),ly intellectual activity, but it should not be regarded as an elitist one. Even those of us who have never created a song, or a story, or a piece of mathematics, can still experience much pleasure from playing or listening to music, or from reading a book or attending a play, or from doing a calcula
57#
發(fā)表于 2025-3-31 12:43:31 | 只看該作者
58#
發(fā)表于 2025-3-31 13:35:37 | 只看該作者
59#
發(fā)表于 2025-3-31 18:21:53 | 只看該作者
https://doi.org/10.1007/978-1-4684-6536-5duced in earlier chapters. Our aim is to proceed from intuitive notions about curves to a clear, abstract definition. This process - the clarification of ideas - is really one of the most important activities of the mathematician.
60#
發(fā)表于 2025-4-1 00:02:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通城县| 永寿县| 定襄县| 栾城县| 于都县| 乌恰县| 泰州市| 嘉黎县| 襄樊市| 凤翔县| 基隆市| 怀宁县| 金华市| 稻城县| 海晏县| 江城| 龙江县| 高要市| 萨嘎县| 南汇区| 德安县| 湘潭市| 天全县| 九寨沟县| 普格县| 岑溪市| 绵竹市| 永平县| 东城区| 万年县| 临安市| 兴城市| 繁峙县| 含山县| 龙海市| 翁牛特旗| 嘉黎县| 东至县| 乐亭县| 曲麻莱县| 红河县|