找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Curvature; James Casey Textbook 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996 Gaussian curvatu

[復(fù)制鏈接]
樓主: ODDS
31#
發(fā)表于 2025-3-26 22:51:32 | 只看該作者
Gaussian Curvature,r. We learned that this variation is governed by Euler’s formula (15.30). In the present chapter, a completely different approach is taken, which is not based at all on the curvature of curves. Here, we study a brilliant idea of Gauss’s, which will enable us to define a unique value of . at each point on a smooth surface.
32#
發(fā)表于 2025-3-27 01:07:42 | 只看該作者
,Levi-Civita (1873–1941), Christoffel (1829–1901), Beltrami (1835–1900), and others. During the closing decades of the 19th century, a powerful school of mathematics developed at the University of Padua. It was here that Levi-Civita came into contact with modern geometry.
33#
發(fā)表于 2025-3-27 08:29:25 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:41 | 只看該作者
35#
發(fā)表于 2025-3-27 14:34:17 | 只看該作者
High Data Rate Transmitter CircuitsWe now discuss the concept of a mapping (or function). The usefulness of this idea for the mathematical sciences can hardly be exaggerated.
36#
發(fā)表于 2025-3-27 19:08:14 | 只看該作者
37#
發(fā)表于 2025-3-27 23:17:13 | 只看該作者
38#
發(fā)表于 2025-3-28 04:38:55 | 只看該作者
39#
發(fā)表于 2025-3-28 09:16:01 | 只看該作者
Black Holes and Accretion EfficiencyIn this chapter, we describe a particular way of moving a vector along a given curve on a surface. It provides an especially revealing means of exploring the non-Euclideanness of the surface.
40#
發(fā)表于 2025-3-28 13:12:12 | 只看該作者
Basic Operations,We start out by performing some geometrical operations that can be easily done on objects located in ordinary three-dimensional space. You will need a ruler and a piece of string (or a tape measure) for measuring lengths, and a protractor for measuring angles.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日照市| 西青区| 拉孜县| 大安市| 玛纳斯县| 伊宁县| 敦化市| 班戈县| 临江市| 托克托县| 新疆| 新竹市| 武清区| 鄂托克旗| 桦甸市| 上犹县| 无锡市| 仪征市| 漳州市| 汕头市| 怀仁县| 河间市| 弥渡县| 浮梁县| 喀什市| 抚宁县| 尼玛县| 时尚| 乌什县| 金门县| 县级市| 彭泽县| 林周县| 灌云县| 云林县| 田阳县| 武山县| 大余县| 铜山县| 马鞍山市| 双辽市|