找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explorations in Harmonic Analysis; With Applications to Steven G. Krantz Textbook 2009 Birkh?user Boston 2009 Fourier analysis.Fourier tran

[復(fù)制鏈接]
樓主: papertrans
31#
發(fā)表于 2025-3-27 00:10:32 | 只看該作者
https://doi.org/10.1007/978-981-99-0872-1m of P. Fatou that a . holomorphic function on the unit disk . has radial (indeed nontangential) boundary limits almost everywhere. Hardy and Riesz wished to expand the space of holomorphic functions for which such results could be obtained.
32#
發(fā)表于 2025-3-27 02:35:20 | 只看該作者
The Central Idea: The Hilbert Transform,intertwined in profound and influential ways. What it all comes down to is that there is only one singular integral in dimension 1, and it is the Hilbert transform. The philosophy is that all significant analytic questions reduce to a singular integral; and in the first dimension there is just one choice.
33#
發(fā)表于 2025-3-27 07:45:48 | 只看該作者
Pseudoconvexity and Domains of Holomorphy,al geometric condition on the boundary. The second is an idea that comes strictly from function theory. The big result in the subject—the solution of the Levi problem—is that these two conditions are equivalent.
34#
發(fā)表于 2025-3-27 12:57:50 | 只看該作者
35#
發(fā)表于 2025-3-27 13:56:55 | 只看該作者
36#
發(fā)表于 2025-3-27 21:26:08 | 只看該作者
37#
發(fā)表于 2025-3-28 00:00:38 | 只看該作者
Canonical Complex Integral Operators,lmay be discovered naturally by way of power series considerations, or partial differential equations considerations, or conformality considerations. The Poisson kernel is the real part of the Cauchy kernel. It also arises naturally as the solution operator for the Dirichlet problem. It is rather mo
38#
發(fā)表于 2025-3-28 03:02:59 | 只看該作者
Hardy Spaces Old and New,m of P. Fatou that a . holomorphic function on the unit disk . has radial (indeed nontangential) boundary limits almost everywhere. Hardy and Riesz wished to expand the space of holomorphic functions for which such results could be obtained.
39#
發(fā)表于 2025-3-28 08:06:43 | 只看該作者
40#
發(fā)表于 2025-3-28 11:00:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 12:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉田县| 定远县| 丁青县| 五常市| 巨野县| 荆门市| 繁峙县| 红原县| 宜春市| 科技| 佛坪县| 文山县| 莱西市| 苍山县| 焉耆| 长治市| 始兴县| 三门县| 阜平县| 枝江市| 和林格尔县| 兖州市| 万全县| 庆元县| 宜州市| 正镶白旗| 河源市| 临泽县| 东港市| 云南省| 五台县| 泗洪县| 谷城县| 株洲县| 镇平县| 铜川市| 平山县| 嘉兴市| 腾冲县| 收藏| 承德市|