找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Explorations in Harmonic Analysis; With Applications to Steven G. Krantz Textbook 2009 Birkh?user Boston 2009 Fourier analysis.Fourier tran

[復(fù)制鏈接]
樓主: papertrans
11#
發(fā)表于 2025-3-23 11:08:36 | 只看該作者
https://doi.org/10.1007/978-981-16-9543-8The function theory of several complex variables (SCV) is—obviously—a generalization of the subject of one complex variable. Certainly some of the results in the former subject are inspired by ideas from the latter subject. But SCV really has an entirely new character.
12#
發(fā)表于 2025-3-23 16:50:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:04:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:21:25 | 只看該作者
Ontology and History of Real Analysis,Real analysis as a subject grew out of struggles to understand, and to make rigorous, Newton and Leibniz’s calculus. But its roots wander in all directions—into real analytic function theory, into the analysis of polynomials, into the solution of differential equations.
15#
發(fā)表于 2025-3-24 03:04:24 | 只看該作者
16#
發(fā)表于 2025-3-24 09:50:55 | 只看該作者
Fractional and Singular Integrals,In some vague sense, the collection of all fractional and singular integrals forms a poor man’s version of a classical calculus of pseudodifferential operators. Certainly a fractional integral is very much like the parametrix for a strongly elliptic operator.
17#
發(fā)表于 2025-3-24 10:57:46 | 只看該作者
A Crash Course in Several Complex Variables,The function theory of several complex variables (SCV) is—obviously—a generalization of the subject of one complex variable. Certainly some of the results in the former subject are inspired by ideas from the latter subject. But SCV really has an entirely new character.
18#
發(fā)表于 2025-3-24 15:49:52 | 只看該作者
Introduction to the Heisenberg Group,This chapter and the next constitute the climax of the present book.We have tried to lay the groundwork so that the reader may see how it is natural to identify the boundary of the unit ball in ℃. with the Heisenberg group and then to do harmonic analysis on that group.
19#
發(fā)表于 2025-3-24 22:00:44 | 只看該作者
20#
發(fā)表于 2025-3-25 00:12:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 12:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌源市| 湛江市| 榆中县| 电白县| 屯昌县| 邵阳县| 海阳市| 锡林浩特市| 贵定县| 五家渠市| 涿州市| 盐津县| 丰镇市| 西畴县| 广饶县| 石嘴山市| 青神县| 兰西县| 南江县| 长丰县| 梓潼县| 凤山市| 崇明县| 玉林市| 那曲县| 顺义区| 德化县| 沈丘县| 长葛市| 娄烦县| 乐亭县| 南木林县| 连南| 镇雄县| 南京市| 闽侯县| 洛南县| 桐城市| 巫山县| 洛宁县| 汾西县|