找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Wojciech Samek,Grégoire Montavon,Klaus-Robert Müll Book 2019 Sprin

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:06:24 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:49 | 只看該作者
Explaining and Interpreting LSTMsque used for explaining the predictions of feed-forward networks to the LSTM architecture used for sequential data modeling and forecasting. The special accumulators and gated interactions present in the LSTM require both a new propagation scheme and an extension of the underlying theoretical framework to deliver faithful explanations.
23#
發(fā)表于 2025-3-25 11:44:53 | 只看該作者
24#
發(fā)表于 2025-3-25 17:32:58 | 只看該作者
0302-9743 urse and provides directions of future development.The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up hu
25#
發(fā)表于 2025-3-25 21:11:40 | 只看該作者
26#
發(fā)表于 2025-3-26 01:23:22 | 只看該作者
27#
發(fā)表于 2025-3-26 08:18:34 | 只看該作者
Michel Tenenhaus,Mohamed Hanafique used for explaining the predictions of feed-forward networks to the LSTM architecture used for sequential data modeling and forecasting. The special accumulators and gated interactions present in the LSTM require both a new propagation scheme and an extension of the underlying theoretical framework to deliver faithful explanations.
28#
發(fā)表于 2025-3-26 09:53:41 | 只看該作者
Cancer-Related Pain in Childhood,t computation and one based on a propagation mechanism. We evaluate them using three “axiomatic” properties: ., ., and .. These properties are tested on the overall explanation, but also at intermediate layers, where our analysis brings further insights on how the explanation is being formed.
29#
發(fā)表于 2025-3-26 12:39:17 | 只看該作者
Carol M. Trivette,Catherine P. Corrttribution methods and show how they share the same idea of using the gradient information as a descriptive factor for the functioning of a model. Finally, we discuss the strengths and limitations of these methods and compare them with available alternatives.
30#
發(fā)表于 2025-3-26 19:38:15 | 只看該作者
Gradient-Based Attribution Methodsttribution methods and show how they share the same idea of using the gradient information as a descriptive factor for the functioning of a model. Finally, we discuss the strengths and limitations of these methods and compare them with available alternatives.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铁岭县| 喀喇沁旗| 武冈市| 朔州市| 康平县| 广昌县| 宜宾县| 开封市| 陵水| 东丰县| 邻水| 集安市| 新和县| 平山县| 吕梁市| 图们市| 杭锦后旗| 滦平县| 增城市| 金昌市| 中山市| 无为县| 宁晋县| 宝丰县| 互助| 黄冈市| 奎屯市| 闵行区| 远安县| 天柱县| 正镶白旗| 于都县| 鸡西市| 崇左市| 青河县| 荣昌县| 涪陵区| 阿克苏市| 遵义市| 揭东县| 赣州市|