找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Wojciech Samek,Grégoire Montavon,Klaus-Robert Müll Book 2019 Sprin

[復制鏈接]
查看: 46706|回復: 51
樓主
發(fā)表于 2025-3-21 17:06:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
編輯Wojciech Samek,Grégoire Montavon,Klaus-Robert Müll
視頻videohttp://file.papertrans.cn/320/319285/319285.mp4
概述Assesses the current state of research on Explainable AI (XAI).Provides a snapshot of interpretable AI techniques.Reflects the current discourse and provides directions of future development
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning;  Wojciech Samek,Grégoire Montavon,Klaus-Robert Müll Book 2019 Sprin
描述.The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For?sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to?perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner...The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of?interpretable and explainable AI and AI techniques that have been proposed recently reflecti
出版日期Book 2019
關鍵詞artificial intelligence; computer vision; deep Learning; explainable AI; explanation Methods; fuzzy contr
版次1
doihttps://doi.org/10.1007/978-3-030-28954-6
isbn_softcover978-3-030-28953-9
isbn_ebook978-3-030-28954-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning影響因子(影響力)




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning影響因子(影響力)學科排名




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning網(wǎng)絡公開度




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning網(wǎng)絡公開度學科排名




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning被引頻次




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning被引頻次學科排名




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning年度引用




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning年度引用學科排名




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning讀者反饋




書目名稱Explainable AI: Interpreting, Explaining and Visualizing Deep Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:18:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:21:50 | 只看該作者
地板
發(fā)表于 2025-3-22 06:54:58 | 只看該作者
Understanding Neural Networks via Feature Visualization: A Surveys in machine learning enable a family of methods to synthesize preferred stimuli that cause a neuron in an artificial or biological brain to fire strongly. Those methods are known as Activation Maximization (AM) [.] or Feature Visualization via Optimization. In this chapter, we (1) review existing A
5#
發(fā)表于 2025-3-22 10:20:28 | 只看該作者
6#
發(fā)表于 2025-3-22 12:54:50 | 只看該作者
7#
發(fā)表于 2025-3-22 18:43:36 | 只看該作者
8#
發(fā)表于 2025-3-22 21:30:23 | 只看該作者
Explanations for Attributing Deep Neural Network Predictionsalthcare decision-making, there is a great need for . and . . of “why” an algorithm is making a certain prediction. In this chapter, we introduce 1. Meta-Predictors as Explanations, a principled framework for learning explanations for any black box algorithm, and 2. Meaningful Perturbations, an inst
9#
發(fā)表于 2025-3-23 05:21:49 | 只看該作者
Gradient-Based Attribution Methodsile several methods have been proposed to explain network predictions, the definition itself of explanation is still debated. Moreover, only a few attempts to compare explanation methods from a theoretical perspective has been done. In this chapter, we discuss the theoretical properties of several a
10#
發(fā)表于 2025-3-23 08:40:29 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵港市| 彰武县| 裕民县| 建宁县| 鹤山市| 华安县| 琼海市| 丁青县| 勃利县| 浦东新区| 遂川县| 蕉岭县| 高雄市| 徐水县| 鄯善县| 弥渡县| 澄江县| 白水县| 乐陵市| 凤台县| 玉屏| 黔西| 获嘉县| 阿拉善右旗| 建宁县| 榕江县| 蚌埠市| 临澧县| 缙云县| 府谷县| 嫩江县| 青州市| 民丰县| 扬中市| 富民县| 海南省| 南阳市| 东山县| 兴化市| 沁源县| 安阳市|