找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Experimental Vibration Analysis for Civil Engineering Structures; EVACES 2023 - Volume Maria Pina Limongelli,Pier Francesco Giordano,Alfr C

[復(fù)制鏈接]
樓主: industrious
11#
發(fā)表于 2025-3-23 13:01:17 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:33 | 只看該作者
13#
發(fā)表于 2025-3-23 18:25:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:23 | 只看該作者
15#
發(fā)表于 2025-3-24 03:48:27 | 只看該作者
,Die Gastst?tte und ihre Akteure,lopment and territorial cohesion. However, bridges, which are crucial elements of transportation networks, are increasingly susceptible to degradation caused by growing traffic volumes and severe weather events. Recent research efforts have focused on developing damage-sensitive features specificall
16#
發(fā)表于 2025-3-24 09:21:24 | 只看該作者
Theorien zur Sozialisation im Jugendalter,ifying bridge damage from the response of an instrumented sensing vehicle. Most current methods are based on identifying bridge properties and supervised learning techniques. However, these approaches require data from the bridge at its different states (i.e., healthy and damaged conditions), which
17#
發(fā)表于 2025-3-24 12:29:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:41:11 | 只看該作者
https://doi.org/10.1007/978-3-642-70917-3hile, with the recent growth and advancement in Machine Learning (ML) techniques, data-driven based Structural Health Monitoring (SHM) systems have piqued the interest of many scholars, as they have the potential to provide a fast and accurate solution to damage detection problems. Although some eff
19#
發(fā)表于 2025-3-24 20:18:51 | 只看該作者
20#
發(fā)表于 2025-3-25 03:07:39 | 只看該作者
https://doi.org/10.1007/978-3-322-91404-0cted visually or using special vehicles called track geometry vehicles (TRVs). These methods are normally labor-expensive and not always effective. In this paper, vibration data collected from in-service trains are employed for the purpose of track monitoring. The proposed approach could be more eff
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆子县| 多伦县| 新兴县| 通州市| 龙胜| 安徽省| 和田市| 垣曲县| 安康市| 海丰县| 甘肃省| 西贡区| 芷江| 米泉市| 达孜县| 郴州市| 榆中县| 广平县| 金平| 沾化县| 长宁区| 弥勒县| 阜新| 东阿县| 南岸区| 广州市| 萝北县| 天津市| 汕尾市| 温宿县| 门头沟区| 莒南县| 乌什县| 泸水县| 庆安县| 广昌县| 合阳县| 扎囊县| 衡阳市| 元朗区| 涿鹿县|