找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Existence and Regularity Results for Some Shape Optimization Problems; Bozhidar Velichkov Book 2015 Scuola Normale Superiore Pisa 2015 Sch

[復(fù)制鏈接]
查看: 40128|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:02:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Existence and Regularity Results for Some Shape Optimization Problems
編輯Bozhidar Velichkov
視頻videohttp://file.papertrans.cn/319/318555/318555.mp4
概述Provides a detailed and self-contained introduction to the recent results and techniques in shape optimization.Presents new techniques concerning the regularity of the optimal sets.Self-contained expo
叢書名稱Publications of the Scuola Normale Superiore
圖書封面Titlebook: Existence and Regularity Results for Some Shape Optimization Problems;  Bozhidar Velichkov Book 2015 Scuola Normale Superiore Pisa 2015 Sch
描述?We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of?more general Schr?dinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles. We investigate the properties of the optimal sets and of the optimal state functions. In particular, we prove that the eigenfunctions are Lipschitz continuous up to the boundary and that the optimal sets subject to the perimeter constraint have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.?
出版日期Book 2015
關(guān)鍵詞Schr?dinger operators; eigenfunctions; optimal sets; optimal state functions; spectral optimization prob
版次1
doihttps://doi.org/10.1007/978-88-7642-527-1
isbn_softcover978-88-7642-526-4
isbn_ebook978-88-7642-527-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightScuola Normale Superiore Pisa 2015
The information of publication is updating

書目名稱Existence and Regularity Results for Some Shape Optimization Problems影響因子(影響力)




書目名稱Existence and Regularity Results for Some Shape Optimization Problems影響因子(影響力)學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems網(wǎng)絡(luò)公開度




書目名稱Existence and Regularity Results for Some Shape Optimization Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems被引頻次




書目名稱Existence and Regularity Results for Some Shape Optimization Problems被引頻次學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems年度引用




書目名稱Existence and Regularity Results for Some Shape Optimization Problems年度引用學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems讀者反饋




書目名稱Existence and Regularity Results for Some Shape Optimization Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:20 | 只看該作者
2239-1460 t have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.?978-88-7642-526-4978-88-7642-527-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
板凳
發(fā)表于 2025-3-22 00:33:29 | 只看該作者
https://doi.org/10.1007/978-88-7642-527-1Schr?dinger operators; eigenfunctions; optimal sets; optimal state functions; spectral optimization prob
地板
發(fā)表于 2025-3-22 07:01:39 | 只看該作者
5#
發(fā)表于 2025-3-22 12:06:28 | 只看該作者
https://doi.org/10.1007/978-3-8349-6180-8 model problem.where . > 0 is a given constant. The existence of an optimal set for the problem (6.1) was proved recently by Bucur (see [20]) and by Mazzoleni and Pratelli (see [81])two completely different techniques.
6#
發(fā)表于 2025-3-22 14:28:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:24:19 | 只看該作者
9#
發(fā)表于 2025-3-23 02:31:25 | 只看該作者
https://doi.org/10.1007/978-3-476-99593-3s in the Euclidean space ?., allowing us to threat at once problems concerning elliptic problems on domains, Schr?dinger operators and operators involving traces of Sobolev functions on (. ? 1)-dimensional sets.
10#
發(fā)表于 2025-3-23 08:11:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊宁县| 昌都县| 克东县| 万宁市| 绍兴市| 山东| 顺义区| 岚皋县| 桂阳县| 紫阳县| 龙岩市| 百色市| 咸阳市| 常山县| 蓝山县| 宁津县| 远安县| 武安市| 镇原县| 台南县| 城步| 铁岭县| 和顺县| 报价| 措勤县| 南充市| 玉山县| 兴安盟| 八宿县| 巩义市| 文水县| 绥江县| 龙山县| 泽州县| 浦北县| 花莲县| 宁国市| 河东区| 福清市| 莱西市| 原阳县|