找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Existence and Regularity Results for Some Shape Optimization Problems; Bozhidar Velichkov Book 2015 Scuola Normale Superiore Pisa 2015 Sch

[復(fù)制鏈接]
查看: 40129|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:02:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Existence and Regularity Results for Some Shape Optimization Problems
編輯Bozhidar Velichkov
視頻videohttp://file.papertrans.cn/319/318555/318555.mp4
概述Provides a detailed and self-contained introduction to the recent results and techniques in shape optimization.Presents new techniques concerning the regularity of the optimal sets.Self-contained expo
叢書名稱Publications of the Scuola Normale Superiore
圖書封面Titlebook: Existence and Regularity Results for Some Shape Optimization Problems;  Bozhidar Velichkov Book 2015 Scuola Normale Superiore Pisa 2015 Sch
描述?We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of?more general Schr?dinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles. We investigate the properties of the optimal sets and of the optimal state functions. In particular, we prove that the eigenfunctions are Lipschitz continuous up to the boundary and that the optimal sets subject to the perimeter constraint have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.?
出版日期Book 2015
關(guān)鍵詞Schr?dinger operators; eigenfunctions; optimal sets; optimal state functions; spectral optimization prob
版次1
doihttps://doi.org/10.1007/978-88-7642-527-1
isbn_softcover978-88-7642-526-4
isbn_ebook978-88-7642-527-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightScuola Normale Superiore Pisa 2015
The information of publication is updating

書目名稱Existence and Regularity Results for Some Shape Optimization Problems影響因子(影響力)




書目名稱Existence and Regularity Results for Some Shape Optimization Problems影響因子(影響力)學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems網(wǎng)絡(luò)公開度




書目名稱Existence and Regularity Results for Some Shape Optimization Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems被引頻次




書目名稱Existence and Regularity Results for Some Shape Optimization Problems被引頻次學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems年度引用




書目名稱Existence and Regularity Results for Some Shape Optimization Problems年度引用學(xué)科排名




書目名稱Existence and Regularity Results for Some Shape Optimization Problems讀者反饋




書目名稱Existence and Regularity Results for Some Shape Optimization Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:20 | 只看該作者
2239-1460 t have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.?978-88-7642-526-4978-88-7642-527-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
板凳
發(fā)表于 2025-3-22 00:33:29 | 只看該作者
https://doi.org/10.1007/978-88-7642-527-1Schr?dinger operators; eigenfunctions; optimal sets; optimal state functions; spectral optimization prob
地板
發(fā)表于 2025-3-22 07:01:39 | 只看該作者
5#
發(fā)表于 2025-3-22 12:06:28 | 只看該作者
https://doi.org/10.1007/978-3-8349-6180-8 model problem.where . > 0 is a given constant. The existence of an optimal set for the problem (6.1) was proved recently by Bucur (see [20]) and by Mazzoleni and Pratelli (see [81])two completely different techniques.
6#
發(fā)表于 2025-3-22 14:28:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:24:19 | 只看該作者
9#
發(fā)表于 2025-3-23 02:31:25 | 只看該作者
https://doi.org/10.1007/978-3-476-99593-3s in the Euclidean space ?., allowing us to threat at once problems concerning elliptic problems on domains, Schr?dinger operators and operators involving traces of Sobolev functions on (. ? 1)-dimensional sets.
10#
發(fā)表于 2025-3-23 08:11:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虎林市| 雷波县| 双江| 湟源县| 会同县| 辛集市| 东山县| 丰原市| 恭城| 神池县| 乐东| 磐安县| 博爱县| 莱芜市| 萝北县| 临城县| 榕江县| 孝感市| 襄汾县| 龙胜| 德阳市| 漳浦县| 巨鹿县| 山东省| 华池县| 五华县| 耿马| 洛宁县| 扎囊县| 满城县| 肇东市| 宁陕县| 绥棱县| 临沂市| 南召县| 湖南省| 屏东市| 西乡县| 商南县| 三亚市| 团风县|