找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Existence Theory for Nonlinear Integral and Integrodifferential Equations; Donal O’Regan,Maria Meehan Book 1998 Springer Science+Business

[復制鏈接]
樓主: 漠不關心
41#
發(fā)表于 2025-3-28 18:05:07 | 只看該作者
Existence Theory for Nonlinear Fredholm and Volterra Integral Equations on Half-Open Intervals,, with 0 ≤ . ≤ ∞. We present a comprehensive collection of existence principles for (5.1.1) and (5.1.2). In particular we establish the existence of a solution . ∈ ..[0, .) (1 ≤ . < ∞) of both equations, the existence of a solution . ∈ ..[0, ∞) of both equations (with . = ∞), and the existence of a
42#
發(fā)表于 2025-3-28 21:55:34 | 只看該作者
43#
發(fā)表于 2025-3-28 23:33:59 | 只看該作者
Integral Inclusions,usion . Here . : [0, .] × . → . is a multivalued map with nonempty compact values; . is a real Banach space. In section 8.2 we present some existence results for (8.1.1) and (8.1.2) when . is a Carathéodory multifunction of u.s.c. or l.s.c. type satisfying some measure of noncompactness assumption.
44#
發(fā)表于 2025-3-29 03:37:12 | 只看該作者
45#
發(fā)表于 2025-3-29 10:10:21 | 只看該作者
Operator Equations in Banach Spaces Relative to the Weak Topology,[., .] and their references (and also Chapter 8). However only a few results have been obtained for equations in a Banach space relative to the weak topology. The first paper [.] appeared in 1971. There Szep discussed in detail the abstract Cauchy problem . with: [0, .] × . → . a weakly-weakly conti
46#
發(fā)表于 2025-3-29 14:10:07 | 只看該作者
Stochastic Integral Equations,cular on the idea of an essential map. In section 11.3 our fixed point theory will then be applied to obtain a general existence principle for stochastic integral equations of Volterra type. This principle will then be used to establish the existence of sample solutions to a class of stochastic inte
47#
發(fā)表于 2025-3-29 16:53:22 | 只看該作者
Periodic Solutions for Operator Equations,ator and . takes values in .. By a solution to (12.1.1) we mean a function . ∈ .[0, .] with . satisfying the equation in (12.1.1) almost everywhere and with .(0) = .(.). In this abstract setting very little is known concerning the existence of solutions to (12.1.1). In the particular case when (12.1
48#
發(fā)表于 2025-3-29 20:18:09 | 只看該作者
Existence Theory for Nonlinear Integral and Integrodifferential Equations
49#
發(fā)表于 2025-3-30 03:19:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
饶河县| 利津县| 无锡市| 衡阳县| 五大连池市| 界首市| 芮城县| 清河县| 文登市| 墨竹工卡县| 泸溪县| 兴山县| 明溪县| 准格尔旗| 兴山县| 静海县| 娱乐| 绿春县| 嘉兴市| 柳河县| 桃园县| 临清市| 云和县| 衡阳市| 昭觉县| 集安市| 大安市| 通州区| 塘沽区| 东方市| 江陵县| 宁国市| 新余市| 家居| 兖州市| 商城县| 肥乡县| 鄂托克前旗| 台湾省| 林甸县| 安溪县|