找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Existence Theory for Nonlinear Integral and Integrodifferential Equations; Donal O’Regan,Maria Meehan Book 1998 Springer Science+Business

[復制鏈接]
樓主: 漠不關心
31#
發(fā)表于 2025-3-26 23:23:09 | 只看該作者
32#
發(fā)表于 2025-3-27 03:04:20 | 只看該作者
33#
發(fā)表于 2025-3-27 08:19:48 | 只看該作者
https://doi.org/10.1007/978-981-99-8258-5Having discussed nonresonant operator and integral equations in Chapter 6, we now turn our attention to the more difficult problem of providing an existence theory for resonant operator and integral equations.
34#
發(fā)表于 2025-3-27 10:01:10 | 只看該作者
Existence Theory for Nonlinear Fredholm and Volterra Integral Equations on Compact Intervals,In this chapter we present existence theory for the nonlinear Fredholm integral equation .and the nonlinear Volterra integral equation .when both are defined on the compact interval [0, .]. Naturally we first concern ourselves with existence principles for both equations.
35#
發(fā)表于 2025-3-27 16:12:03 | 只看該作者
Existence Theory for Nonlinear Resonant Operator and Integral Equations,Having discussed nonresonant operator and integral equations in Chapter 6, we now turn our attention to the more difficult problem of providing an existence theory for resonant operator and integral equations.
36#
發(fā)表于 2025-3-27 19:00:29 | 只看該作者
37#
發(fā)表于 2025-3-28 00:23:28 | 只看該作者
https://doi.org/10.1007/978-94-011-4992-1Integral equation; differential equation; ordinary differential equation; ordinary differential equatio
38#
發(fā)表于 2025-3-28 05:49:38 | 只看該作者
Introduction and Preliminaries,me specialised topics in integral equations which we hope will inspire further research in the area. To this end, the first part of the book deals with existence principles and results for nonlinear, Fredholm and Volterra integral and integrodifferential equations on compact and half-open intervals,
39#
發(fā)表于 2025-3-28 08:56:19 | 只看該作者
40#
發(fā)表于 2025-3-28 10:52:52 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 18:53
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
水城县| 盐城市| 靖江市| 安新县| 北流市| 临夏县| 丽水市| 东阳市| 自治县| 永城市| 福泉市| 安顺市| 武义县| 呼图壁县| 共和县| 商南县| 鄂尔多斯市| 吴旗县| 全椒县| 榆中县| 会昌县| 麟游县| 阳江市| 和林格尔县| 大城县| 资溪县| 堆龙德庆县| 丰顺县| 隆尧县| 舟山市| 耒阳市| 嘉义县| 潜山县| 湛江市| 襄汾县| 含山县| 桑植县| 佛坪县| 乌鲁木齐县| 湘潭市| 峨眉山市|