找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multiobjective Optimization; Theoretical Advances Ajith Abraham,Lakhmi Jain,Robert Goldberg Book 2005 Springer-Verlag London 2

[復(fù)制鏈接]
查看: 23483|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:31:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Multiobjective Optimization
副標(biāo)題Theoretical Advances
編輯Ajith Abraham,Lakhmi Jain,Robert Goldberg
視頻videohttp://file.papertrans.cn/318/317991/317991.mp4
概述Offers the first-ever comprehensive treatment of the developmental as well as application aspects of the "cutting edge” field of evolutionary computation based multi-criteria optimisation.The only vol
叢書名稱Advanced Information and Knowledge Processing
圖書封面Titlebook: Evolutionary Multiobjective Optimization; Theoretical Advances Ajith Abraham,Lakhmi Jain,Robert Goldberg Book 2005 Springer-Verlag London 2
描述.Evolutionary Multiobjective Optimization. is a rare collection of the latest state-of-the-art theoretical research, design challenges and applications in the field of multiobjective optimization paradigms using evolutionary algorithms. It includes two introductory chapters giving all the fundamental definitions, several complex test functions and a practical problem involving the multiobjective optimization of space structures under static and seismic loading conditions used to illustrate the various multiobjective optimization concepts. ..Important features include:...Detailed overview of?all the multiobjective optimization paradigms using evolutionary algorithms..Excellent coverage of timely, advanced multiobjective optimization topics..State-of-the-art theoretical research and application developments..Chapters authored by pioneers in the field ..Academics and industrial scientists as well as engineers engaged in research, development and application of evolutionary algorithm based Multiobjective Optimization will find the comprehensive coverage of this book invaluable..
出版日期Book 2005
關(guān)鍵詞Computer; Data Structures; Genetic Algorithms; Multi-Criteria Optimization; algorithms; automata; evolutio
版次1
doihttps://doi.org/10.1007/1-84628-137-7
isbn_softcover978-1-84996-916-1
isbn_ebook978-1-84628-137-2Series ISSN 1610-3947 Series E-ISSN 2197-8441
issn_series 1610-3947
copyrightSpringer-Verlag London 2005
The information of publication is updating

書目名稱Evolutionary Multiobjective Optimization影響因子(影響力)




書目名稱Evolutionary Multiobjective Optimization影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Multiobjective Optimization網(wǎng)絡(luò)公開度




書目名稱Evolutionary Multiobjective Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Multiobjective Optimization被引頻次




書目名稱Evolutionary Multiobjective Optimization被引頻次學(xué)科排名




書目名稱Evolutionary Multiobjective Optimization年度引用




書目名稱Evolutionary Multiobjective Optimization年度引用學(xué)科排名




書目名稱Evolutionary Multiobjective Optimization讀者反饋




書目名稱Evolutionary Multiobjective Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:32 | 只看該作者
Experimenting with Raspberry Piing. In this introductory chapter, some fundamental concepts of multiobjective optimization are introduced, emphasizing the motivation and advantages of using evolutionary algorithms. We then lay out the important contributions of the remaining chapters of this volume.
板凳
發(fā)表于 2025-3-22 01:38:27 | 只看該作者
地板
發(fā)表于 2025-3-22 05:26:40 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:25 | 只看該作者
https://doi.org/10.1007/978-1-4899-6635-3uctures are evaluated and compared on several multiobjective example problems. The results presented show that typically, linear lists perform better for small population sizes and higher-dimensional Pareto fronts (large archives) whereas Quad-trees perform better for larger population sizes and Pareto sets of small cardinality.
6#
發(fā)表于 2025-3-22 15:14:46 | 只看該作者
Quad-trees: A Data Structure for Storing Pareto Sets in Multiobjective Evolutionary Algorithms withuctures are evaluated and compared on several multiobjective example problems. The results presented show that typically, linear lists perform better for small population sizes and higher-dimensional Pareto fronts (large archives) whereas Quad-trees perform better for larger population sizes and Pareto sets of small cardinality.
7#
發(fā)表于 2025-3-22 20:10:02 | 只看該作者
The Transformative Power of Action Research,over to the multiobjective case, if a simple dominance-based selection scheme is used. As a solution, a combined strategy is proposed using dominance-based selection in the archive and scalarizing functions in the working population.
8#
發(fā)表于 2025-3-22 21:48:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:33 | 只看該作者
Self-adaptation and Convergence of Multiobjective Evolutionary Algorithms in Continuous Search Spacover to the multiobjective case, if a simple dominance-based selection scheme is used. As a solution, a combined strategy is proposed using dominance-based selection in the archive and scalarizing functions in the working population.
10#
發(fā)表于 2025-3-23 07:12:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
禄丰县| 邹城市| 深州市| 宜兰县| 尼勒克县| 西乌珠穆沁旗| 定南县| 大关县| 志丹县| 剑川县| 铜鼓县| 屯门区| 沙田区| 垫江县| 大悟县| 洪泽县| 乡宁县| 赫章县| 洞口县| 铁力市| 滦平县| 岳阳县| 隆子县| 青州市| 扶沟县| 东丰县| 奉节县| 东乡族自治县| 子洲县| 满城县| 沂源县| 辰溪县| 万州区| 古蔺县| 白银市| 亚东县| 庆云县| 遵义县| 张北县| 吴堡县| 儋州市|