找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multiobjective Optimization; Theoretical Advances Ajith Abraham,Lakhmi Jain,Robert Goldberg Book 2005 Springer-Verlag London 2

[復制鏈接]
查看: 23488|回復: 35
樓主
發(fā)表于 2025-3-21 16:31:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Evolutionary Multiobjective Optimization
副標題Theoretical Advances
編輯Ajith Abraham,Lakhmi Jain,Robert Goldberg
視頻videohttp://file.papertrans.cn/318/317991/317991.mp4
概述Offers the first-ever comprehensive treatment of the developmental as well as application aspects of the "cutting edge” field of evolutionary computation based multi-criteria optimisation.The only vol
叢書名稱Advanced Information and Knowledge Processing
圖書封面Titlebook: Evolutionary Multiobjective Optimization; Theoretical Advances Ajith Abraham,Lakhmi Jain,Robert Goldberg Book 2005 Springer-Verlag London 2
描述.Evolutionary Multiobjective Optimization. is a rare collection of the latest state-of-the-art theoretical research, design challenges and applications in the field of multiobjective optimization paradigms using evolutionary algorithms. It includes two introductory chapters giving all the fundamental definitions, several complex test functions and a practical problem involving the multiobjective optimization of space structures under static and seismic loading conditions used to illustrate the various multiobjective optimization concepts. ..Important features include:...Detailed overview of?all the multiobjective optimization paradigms using evolutionary algorithms..Excellent coverage of timely, advanced multiobjective optimization topics..State-of-the-art theoretical research and application developments..Chapters authored by pioneers in the field ..Academics and industrial scientists as well as engineers engaged in research, development and application of evolutionary algorithm based Multiobjective Optimization will find the comprehensive coverage of this book invaluable..
出版日期Book 2005
關鍵詞Computer; Data Structures; Genetic Algorithms; Multi-Criteria Optimization; algorithms; automata; evolutio
版次1
doihttps://doi.org/10.1007/1-84628-137-7
isbn_softcover978-1-84996-916-1
isbn_ebook978-1-84628-137-2Series ISSN 1610-3947 Series E-ISSN 2197-8441
issn_series 1610-3947
copyrightSpringer-Verlag London 2005
The information of publication is updating

書目名稱Evolutionary Multiobjective Optimization影響因子(影響力)




書目名稱Evolutionary Multiobjective Optimization影響因子(影響力)學科排名




書目名稱Evolutionary Multiobjective Optimization網(wǎng)絡公開度




書目名稱Evolutionary Multiobjective Optimization網(wǎng)絡公開度學科排名




書目名稱Evolutionary Multiobjective Optimization被引頻次




書目名稱Evolutionary Multiobjective Optimization被引頻次學科排名




書目名稱Evolutionary Multiobjective Optimization年度引用




書目名稱Evolutionary Multiobjective Optimization年度引用學科排名




書目名稱Evolutionary Multiobjective Optimization讀者反饋




書目名稱Evolutionary Multiobjective Optimization讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:45:32 | 只看該作者
Experimenting with Raspberry Piing. In this introductory chapter, some fundamental concepts of multiobjective optimization are introduced, emphasizing the motivation and advantages of using evolutionary algorithms. We then lay out the important contributions of the remaining chapters of this volume.
板凳
發(fā)表于 2025-3-22 01:38:27 | 只看該作者
地板
發(fā)表于 2025-3-22 05:26:40 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:25 | 只看該作者
https://doi.org/10.1007/978-1-4899-6635-3uctures are evaluated and compared on several multiobjective example problems. The results presented show that typically, linear lists perform better for small population sizes and higher-dimensional Pareto fronts (large archives) whereas Quad-trees perform better for larger population sizes and Pareto sets of small cardinality.
6#
發(fā)表于 2025-3-22 15:14:46 | 只看該作者
Quad-trees: A Data Structure for Storing Pareto Sets in Multiobjective Evolutionary Algorithms withuctures are evaluated and compared on several multiobjective example problems. The results presented show that typically, linear lists perform better for small population sizes and higher-dimensional Pareto fronts (large archives) whereas Quad-trees perform better for larger population sizes and Pareto sets of small cardinality.
7#
發(fā)表于 2025-3-22 20:10:02 | 只看該作者
The Transformative Power of Action Research,over to the multiobjective case, if a simple dominance-based selection scheme is used. As a solution, a combined strategy is proposed using dominance-based selection in the archive and scalarizing functions in the working population.
8#
發(fā)表于 2025-3-22 21:48:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:33 | 只看該作者
Self-adaptation and Convergence of Multiobjective Evolutionary Algorithms in Continuous Search Spacover to the multiobjective case, if a simple dominance-based selection scheme is used. As a solution, a combined strategy is proposed using dominance-based selection in the archive and scalarizing functions in the working population.
10#
發(fā)表于 2025-3-23 07:12:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
遂溪县| 涟水县| 巴林右旗| 平和县| 威信县| 崇州市| 萨迦县| 临夏县| 竹溪县| 大安市| 兴城市| 浦东新区| 仙桃市| 新野县| 泰来县| 大名县| 大埔县| 嵊州市| 米脂县| 揭西县| 屯门区| 宁远县| 呼图壁县| 汉源县| 南汇区| 屯昌县| 收藏| 巢湖市| 乐清市| 梅州市| 西畴县| 无锡市| 阜阳市| 莆田市| 嘉兴市| 平原县| 溧阳市| 大足县| 东方市| 遂溪县| 绥宁县|