找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Machine Learning Techniques; Algorithms and Appli Seyedali Mirjalili,Hossam Faris,Ibrahim Aljarah Book 2020 Springer Nature Si

[復(fù)制鏈接]
樓主: interleukins
41#
發(fā)表于 2025-3-28 18:02:43 | 只看該作者
Book 2020sification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimi
42#
發(fā)表于 2025-3-28 22:08:11 | 只看該作者
https://doi.org/10.1007/978-3-642-99339-8-dominating sorting genetic algorithm (NSGA-II), common traditional machine learning algorithms, and some conventional filter-based feature selection methods. As per the obtained results, MOPSO is competitive and outperforms NSGA-II, traditional machine learning methods, and filter-based methods in most of the studied datasets.
43#
發(fā)表于 2025-3-29 02:31:37 | 只看該作者
44#
發(fā)表于 2025-3-29 03:20:40 | 只看該作者
45#
發(fā)表于 2025-3-29 10:43:18 | 只看該作者
46#
發(fā)表于 2025-3-29 13:39:04 | 只看該作者
Support Vector Machine: Applications and Improvements Using Evolutionary Algorithmsr. The method has been applied to a set of experimental data for diabetes mellitus diagnosis. Results show that the method leads to a classifier which distinguished healthy and patient cases with 87.5% of accuracy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣庄市| 尉犁县| 长丰县| 青阳县| 寿阳县| 永定县| 错那县| 扎兰屯市| 兴和县| 和平区| 和静县| 汝州市| 横峰县| 石门县| 黄陵县| 宁安市| 海兴县| 民县| 桃园县| 穆棱市| 平安县| 辽源市| 临泽县| 沭阳县| 台湾省| 彰化县| 双辽市| 眉山市| 温宿县| 乌审旗| 和硕县| 绍兴市| 红安县| 泌阳县| 江阴市| 广元市| 房产| 图们市| 溆浦县| 宁波市| 平塘县|